Research Article

Nano Research

, Volume 3, Issue 7, pp 528-536

First online:

Open Access This content is freely available online to anyone, anywhere at any time.

Direct comparison of catalyst-free and catalyst-induced GaN nanowires

  • Caroline ChèzeAffiliated withPaul-Drude-Institut für FestkörperelektronikQimonda Email author 
  • , Lutz GeelhaarAffiliated withPaul-Drude-Institut für FestkörperelektronikQimonda
  • , Oliver BrandtAffiliated withPaul-Drude-Institut für Festkörperelektronik
  • , Walter M. WeberAffiliated withNaMLab gGmbHQimonda
  • , Henning RiechertAffiliated withPaul-Drude-Institut für FestkörperelektronikPhysics Department, Aristotle University
  • , Steffen MünchAffiliated withTechnische Physik, Universität Würzburg
  • , Ralph RothemundAffiliated withTechnische Physik, Universität Würzburg
  • , Stephan ReitzensteinAffiliated withTechnische Physik, Universität Würzburg
  • , Alfred ForchelAffiliated withTechnische Physik, Universität Würzburg
    • , Thomas KehagiasAffiliated withPhysics Department, Aristotle University
    • , Philomela KomninouAffiliated withPhysics Department, Aristotle University
    • , George P. DimitrakopulosAffiliated withPhysics Department, Aristotle University
    • , Theodoros KarakostasAffiliated withPhysics Department, Aristotle University


GaN nanowires have been grown by molecular beam epitaxy either catalyst-free or catalyst-induced by means of Ni seeds. Under identical growth conditions of temperature and V/III ratio, both types of GaN nanowires are of wurtzite structure elongated in the Ga-polar direction and are constricted by M-plane facets. However, the catalyst-induced nanowires contain many more basal-plane stacking faults and their photoluminescence is weaker. These differences can be explained as effects of the catalyst Ni seeds.


Nanowire nanocolumn molecular beam epitaxy (MBE) photoluminescence stacking faults catalyst