Research Article

Nano Research

, Volume 2, Issue 12, pp 945-954

Open Access This content is freely available online to anyone, anywhere at any time.

Molecular dynamics study of dipalmitoylphosphatidylcholine lipid layer self-assembly onto a single-walled carbon nanotube

  • Hongming WangAffiliated withLaboratory of Quantum Chemistry, Department of Chemistry and INPAC Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven
  • , Servaas MichielssensAffiliated withLaboratory of Quantum Chemistry, Department of Chemistry and INPAC Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven
  • , Samuel L. C. MoorsAffiliated withLaboratory of Quantum Chemistry, Department of Chemistry and INPAC Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven
  • , Arnout CeulemansAffiliated withLaboratory of Quantum Chemistry, Department of Chemistry and INPAC Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven Email author 

Abstract

Single-walled carbon nanotubes (SWNTs) are possible nano-injectors and delivery vehicles of molecular probes and drugs into cells. In order to explore the interaction between lipid membranes and carbon nanotubes, we investigate the binding mechanism of dipalmitoylphosphatidylcholine (DPPC) with SWNTs by molecular dynamics. In low concentration range simulations, the DPPC molecules form a supramolecular two-layered cylindrical structure wrapped around the carbon nanotube surface. The hydrophobic part of DPPC is adsorbed on the surface of the nanotube, and the hydrophilic top is oriented towards the aqueous phase. For higher concentration ranges, the DPPC molecules are found to form a supramolecular multi-layered structure wrapped around the carbon nanotube surface. At the saturation point a membrane-like structure is self-assembled with a width of 41.4 Å, which is slightly larger than the width of a cell membrane. Our study sheds light on the existing conflicting simulation data on adsorption of single-chained phospholipids.
http://static-content.springer.com/image/art%3A10.1007%2Fs12274-009-9097-5/MediaObjects/12274_2009_9097_Fig1_HTML.jpg

Keywords

Cell membrane molecular dynamics carbon nanotubes self-assembly nano-injector