Nano Research

, Volume 2, Issue 7, pp 517–525

Carbon nanotubes inhibit the hemolytic activity of the pore-forming toxin pyolysin


  • Apraku David Donkor
    • Department of ChemistryUniversity of Waterloo
  • Zhengding Su
    • Department of ChemistryUniversity of Waterloo
  • Himadri S. Mandal
    • Department of ChemistryUniversity of Waterloo
  • Xu Jin
    • Department of ChemistryUniversity of Waterloo
    • Department of ChemistryUniversity of Waterloo
Open AccessResearch Article

DOI: 10.1007/s12274-009-9049-0

Cite this article as:
Donkor, A.D., Su, Z., Mandal, H.S. et al. Nano Res. (2009) 2: 517. doi:10.1007/s12274-009-9049-0


Functionalized carbon nanotubes have already demonstrated great biocompatibility and potential for drug delivery. We have synthesized acid oxidized and non-covalently PEGlyated single-walled carbon nanotubes (SWNTs), which were previously prepared for drug delivery purposes, and explored their potential for detoxification in the bloodstream. Our investigations of the binding of SWNTs to a pore-forming toxin pyolysin show that SWNTs prevented toxin-induced pore formation in the cell membrane of human red blood cells. Quantitative hemolysis assay and scanning electron microscopy were used to evaluate the inhibition of hemolytic activity of pyolysin. According to Raman spectroscopy data, human red blood cells, unlike HeLa cells, did not internalize oxidized SWNTs. Molecular modeling and circular dichroism measurements were used to predict the 3-D structure of pyolysin (domain 4) and its interaction with SWNTs. The tryptophan-rich hydrophobic motif in the membrane-binding domain of pyolysin, a common construct in a large family of cholesterol-dependent cytolysins, shows high affinity for SWNTs.


Single-walled carbon nanotubes(SWNT)pore-forming toxinpyolysinhemolytic activityred blood cellprotein-nanotube interactiondetoxification
Download to read the full article text

Supplementary material

12274_2009_9049_MOESM1_ESM.pdf (777 kb)
Supplementary material, approximately 780 KB.

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009