, Volume 2, Issue 5, pp 386-393,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 25 Mar 2010

Au-Ag alloy nanoporous nanotubes


Metallic nanostructures with hollow interiors or tailored porosity represent a special class of attractive materials with intriguing chemicophysical properties. This paper presents the fabrication of a new type of metallic nanoporous nanotube structure based on a facile and effective combination of nanocrystal growth and surface modification. By controlling the individual steps involved in this process, such as nanowire growth, surface modification, thermal diffusion, and dealloying, one-dimensional (1-D) metallic nanostructures can be prepared with tailored structural features and pre-designed functionalities. These tubular and porous nanostructures show distinct optical properties, such as tunable absorption in the near-infrared region, and enhanced capability for electrochemiluminescence signal amplification, which make them particularly desirable as novel 1-D nanocarriers for biomedical, drug delivery and sensing applications.