, Volume 2, Issue 3, pp 242-253,
Open Access This content is freely available online to anyone, anywhere at any time.

Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly

Abstract

A simple strategy for the synthesis of macro-mesoporous carbonaceous monolith materials has been demonstrated through an organic-organic self-assembly at the interface of an organic scaffold such as polyurethane (PU) foam. Hierarchically porous carbonaceous monoliths with cubic (Im $ \bar 3 $ m) or hexagonal (p6mm) mesostructure were prepared through evaporation induced self-assembly of the mesostructure on the three-dimensional (3-D) interconnecting struts of the PU foam scaffold. The preparation was carried out by using phenol/formaldehyde resol as a carbon precursor, triblock copolymer F127 as a template for the mesostructure and PU foam as a sacrificial monolithic scaffold. Their hierarchical pore system was macroscopically fabricated with cable-like mesostructured carbonaceous struts. The carbonaceous monoliths exhibit macropores of diameter 100–450 μm, adjustable uniform mesopores (3.8–7.5 nm), high surface areas (200–870 m2/g), and large pore volumes (0.17–0.58) cm3/g. Compared with the corresponding evaporation induced self-assembly (EISA) process on a planar substrate, this facile process is a time-saving, labor-saving, space-saving, and highly efficient pathway for mass production of ordered mesoporous materials.

This article is published with open access at Springerlink.com