[1]

Kelly, B. T. *Physics of Graphite*; London: Applied Science Publishers, 1981.

[2]

Wallace, P. R. The band theory of graphite.

*Phys. Rev.*
**1947**,

*71*, 622–634.

MATHCrossRefADS[3]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V. Firsov A. A. Electric field effect in atomically thin carbon films.

*Science*
**2004**,

*306*, 666–669.

CrossRefPubMedADS[4]

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. *Rev. Mod. Phys.*
**2008**, *in press.*

[5]

Yang, L.; Cohen, M. L; Louie, S. G. Magnetic edge-state excitons in zigzag graphene nanoribbons. *Phys. Rev. Lett.*
**2008**, *101*, 186401.

[6]

Enoki, T.; Kobayashi, Y.; Fukui, K.-I. Electronic structures of graphene edges and nanographene.

*Int. Rev. Phys. Chem.*
**2007**,

*26*, 609–645.

CrossRef[7]

Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites.

*Nat. Nanotechnol.*
**2008**,

*3*, 327–331.

CrossRefPubMedADS[8]

Ajayan, P. M.; Yakobson, B. I. Oxygen breaks into carbon world.

*Nature*
**2006**,

*441*, 818–819.

CrossRefPubMedADS[9]

Li, J.-L; Kudin, K. N.; McAllister, M. J.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Oxygen-driven unzipping of graphitic materials. *Phys. Rev. Lett.*
**2006**, *96*, 176101.

[10]

Kudin, K. N.; Scuseria, G. E.; Yakobson, B. I. C_{2}F, BN and C nano-shell elasticity by ab initio computations. *Phys. Rev. B*
**2001**, *64*, 235406.

[11]

Yakobson, B. I.; Avouris, P. Mechanical properties of carbon nanotubes.

*Topics Appl. Phys.*
**2001**,

*80*, 287–327.

CrossRefADS[12]

Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond the linear response.

*Phys. Rev. Lett.*
**1996**,

*76*, 2511–2514.

CrossRefPubMedADS[13]

Doi, M.; Edwards, S. F. *The Theory of Polymer Dynamics*; Oxford: Clarendon Press, 1986.

[14]

Yakobson, B. I.; Couchman, L. S. Persistence length and nanomechanics of random bundles of nanotubes.

*J. Nanoparticle Res.*
**2006**,

*8*, 105–110.

CrossRef[15]

Yakobson, B. I.; Couchman, L. S. Carbon nanotubes: Supramolecular mechanics. In *Encyclopedia of Nanoscience and Nanotechnology*, Schwartz J. A.; Contescu, C. I.; Putyera, K., Eds.; Marcel Dekker: New York, 2004. pp. 587–601.

[16]

Brenner, D. W. Tersoff-type potential for carbon, hydrogen and oxygen. *Mat. Res. Soc. Symp. Proc.*
**1989**, *141*, 59–64.

[17]

Tersoff, J. New empirical approach for the structure and energy of covalent systems.

*Phys. Rev. B*
**1988**,

*37*, 6991–7000.

CrossRefADS[18]

Ballone, P.; Milani, P. Simulated annealing of carbon clusters. *Phys. Rev. B*, **1990**, *42*, 0003201.

[19]

Jun, S. Density-functional study of edge stress in graphene. *Phys. Rev. B*
**2008**, *78*, 073405.

[20]

Son, Y.-W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. *Phys. Rev. Lett.*
**2006**, *97*, 216803.

[21]

Koskinen, P.; Malola, S.; Hakkinen, H. Self-passivating edge reconstructions of graphene. *Phys. Rev. Lett.*
**2008**, *101*, 115502.

[22]

Courant, R.; Robbins, H.; Stewart, I.

*What is Mathematics? An Elementary Approach to Ideas and Methods*;

*Oxford*: Oxford University Press, 1996.

MATH[23]

Shenoy, V. B.; Reddy, C. D.; Ramasubramaniam, A.; Zhang, Y.W. Edge-stressinduced warping of graphene sheets and nanoribbons. *Phys. Rev. Lett.*
**2008**, *101*, 245501.