Nano Research

, Volume 1, Issue 5, pp 361–394

Charge transport in disordered graphene-based low dimensional materials

  • Alessandro Cresti
  • Norbert Nemec
  • Blanca Biel
  • Gabriel Niebler
  • François Triozon
  • Gianaurelio Cuniberti
  • Stephan Roche
Open AccessReview Article

DOI: 10.1007/s12274-008-8043-2

Cite this article as:
Cresti, A., Nemec, N., Biel, B. et al. Nano Res. (2008) 1: 361. doi:10.1007/s12274-008-8043-2

Abstract

Two-dimensional graphene, carbon nanotubes, and graphene nanoribbons represent a novel class of low dimensional materials that could serve as building blocks for future carbon-based nanoelectronics. Although these systems share a similar underlying electronic structure, whose exact details depend on confinement effects, crucial differences emerge when disorder comes into play. In this review, we consider the transport properties of these materials, with particular emphasis on the case of graphene nanoribbons. After summarizing the electronic and transport properties of defect-free systems, we focus on the effects of a model disorder potential (Anderson-type), and illustrate how transport properties are sensitive to the underlying symmetry. We provide analytical expressions for the elastic mean free path of carbon nanotubes and graphene nanoribbons, and discuss the onset of weak and strong localization regimes, which are genuinely dependent on the transport dimensionality. We also consider the effects of edge disorder and roughness for graphene nanoribbons in relation to their armchair or zigzag orientation.

https://static-content.springer.com/image/art%3A10.1007%2Fs12274-008-8043-2/MediaObjects/12274_2008_8043_Fig1_HTML.jpg

Keywords

Graphenecharge transportcarbon nanotubes
Download to read the full article text

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2008

Authors and Affiliations

  • Alessandro Cresti
    • 1
    • 2
  • Norbert Nemec
    • 3
  • Blanca Biel
    • 1
    • 2
  • Gabriel Niebler
    • 4
    • 5
  • François Triozon
    • 1
  • Gianaurelio Cuniberti
    • 4
  • Stephan Roche
    • 2
  1. 1.CEA, LETI, MINATECGrenobleFrance
  2. 2.CEAInstitute for Nanoscience and Cryogenics, INAC/SPSMS/GTGrenoble Cedex 9France
  3. 3.Theory of Condensed Matter Group, Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  4. 4.Institute for Materials ScienceTU DresdenDresdenGermany
  5. 5.Department of Condensed Matter Physics, Faculty of Mathematics and PhysicsCharles UniversityPrague 2Czech Republic