We present a semi-analytical model incorporating the effects of edge bond relaxation, the third nearest neighbor interactions, and edge scattering in graphene nanoribbon field-effect transistors (GNRFETs) with armchair-edge GNR (AGNR) channels. Unlike carbon nanotubes (CNTs) which do not have edges, the existence of edges in the AGNRs has a significant effect on the quantum capacitance and ballistic I-V characteristics of GNRFETs. For an AGNR with an index of m=3p, the band gap decreases and the ON current increases whereas for an AGNR with an index of m=3p+1, the quantum capacitance increases and the ON current decreases. The effect of edge scattering, which reduces the ON current, is also included in the model.



Graphene nanoribbon field-effect transistor edge bond relaxation third nearest neighbor interaction edge scattering

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2008