Skip to main content
Log in

Application of chemical biology in target identification and drug discovery

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Drug discovery and development is vital to the well-being of mankind and sustainability of the pharmaceutical industry. Using chemical biology approaches to discover drug leads has become a widely accepted path partially because of the completion of the Human Genome Project. Chemical biology mainly solves biological problems through searching previously unknown targets for pharmacologically active small molecules or finding ligands for well-defined drug targets. It is a powerful tool to study how these small molecules interact with their respective targets, as well as their roles in signal transduction, molecular recognition and cell functions. There have been an increasing number of new therapeutic targets being identified and subsequently validated as a result of advances in functional genomics, which in turn led to the discovery of numerous active small molecules via a variety of high-throughput screening initiatives. In this review, we highlight some applications of chemical biology in the context of drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baetz, K., L. Mchardy, K. Gable, T. Tarling, D. Reberioux, J. Bryan, R.J. Andersen, T. Dunn, P. Hieter, and M. Roberge. 2004. Yeast genome-wide drug-induced haploinsufficiency screen to determine drug mode of action. Proceedings of the National Academy of Sciences of the United States of America 101: 4525–4530.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beveridge, M., Y.W. Park, J. Hermes, A. Marenghi, G. Brophy, and A. Santos. 2000. Detection of p56(lck) kinase activity using scintillation proximity assay in 384-well format and imaging proximity assay in 384- and 1536-well format. Journal of Biomolecular Screening 5: 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Blais, J.D., K.T. Chin, E. Zito, Y. Zhang, N. Heldman, H.P. Harding, D. Fass, C. Thorpe, and D. Ron. 2010. A small molecule inhibitor of endoplasmic reticulum oxidation 1 (ERO1) with selectively reversible thiol reactivity. Journal of Biological Chemistry 285: 20993–21003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodin, P., E. Delnery, and E. Soleilhac. 2015. High content screening in chemical biology: Overview and main challenges. Medecine Sciences : M/S 31: 187–196.

    Article  PubMed  Google Scholar 

  • Chandrasekhar, S., L.K. Iyer, J.P. Panchal, E.M. Topp, J.B. Cannon, and V.V. Ranade. 2013. Microarrays and microneedle arrays for delivery of peptides, proteins, vaccines and other applications. Expert Opinion on Drug Delivery 10: 1155–1170.

    Article  CAS  PubMed  Google Scholar 

  • Changelian, P.S., M.E. Flanagan, D.J. Ball, C.R. Kent, K.S. Magnuson, W.H. Martin, B.J. Rizzuti, P.S. Sawyer, B.D. Perry, W.H. Brissette, S.P. Mccurdy, E.M. Kudlacz, M.J. Conklyn, E.A. Elliott, E.R. Koslov, M.B. Fisher, T.J. Strelevitz, K. Yoon, D.A. Whipple, J. Sun, M.J. Munchhof, J.L. Doty, J.M. Casavant, T.A. Blumenkopf, M. Hines, M.F. Brown, B.M. Lillie, C. Subramanyam, C. Shang-Poa, A.J. Milici, G.E. Beckius, J.D. Moyer, C. Su, T.G. Woodworth, A.S. Gaweco, C.R. Beals, B.H. Littman, D.A. Fisher, J.F. Smith, P. Zagouras, H.A. Magna, M.J. Saltarelli, K.S. Johnson, L.F. Nelms, S.G. Des Etages, L.S. Hayes, T.T. Kawabata, D. Finco-Kent, D.L. Baker, M. Larson, M.S. Si, R. Paniagua, J. Higgins, B. Holm, B. Reitz, Y.J. Zhou, R.E. Morris, J.J. O’shea, and D.C. Borie. 2003. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302: 875–878.

    Article  CAS  PubMed  Google Scholar 

  • Chauret, N., J.A. Yergey, C. Brideau, R.W. Friesen, J. Mancini, D. Riendeau, J. Silva, A. Styhler, L.A. Trimble, and D.A. Nicoll-Griffith. 2001. In vitro metabolism considerations, including activity testing of metabolites, in the discovery and selection of the COX-2 inhibitor etoricoxib (MK-0663). Bioorganic & Medicinal Chemistry Letters 11: 1059–1062.

    Article  CAS  Google Scholar 

  • Chen, D., J. Liao, N. Li, C. Zhou, Q. Liu, G. Wang, R. Zhang, S. Zhang, L. Lin, K. Chen, X. Xie, F. Nan, A.A. Young, and M.W. Wang. 2007. A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice. Proceedings of the National Academy of Sciences of the United States of America 104: 943–948.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho, M.C., H.E. Yoon, J.W. Kang, S.W. Park, Y. Yang, J.T. Hong, E.Y. Song, S.G. Paik, S.H. Kim, and D.Y. Yoon. 2006. A simple method to screen ligands of peroxisome proliferator-activated receptor δ. European Journal of Pharmaceutical Sciences 29: 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Clark, S.A., C. Quaade, H. Constantly, P. Hansen, P. Halban, S. Ferber, C.B. Newgard, and K. Normington. 1997. Novel insulinoma cell lines produced by iterative engineering of GLUT2, glucokinase, and human insulin expression. Diabetes 46: 958–967.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, P. 2002. Protein kinases—The major drug targets of the twenty-first century? Nature Reviews Drug Discovery 1: 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Costanzo, M., A. Baryshnikova, J. Bellay, Y. Kim, E.D. Spear, C.S. Sevier, H. Ding, J.L.Y. Koh, K. Toufighi, S. Mostafavi, J. Prinz, R.P. St Onge, B. Vandersluis, T. Makhnevych, F.J. Vizeacoumar, S. Alizadeh, S. Bahr, R.L. Brost, Y. Chen, M. Cokol, R. Deshpande, Z. Li, Z.Y. Lin, W. Liang, M. Marback, J. Paw, B.J. San Luis, E. Shuteriqi, A.H.Y. Tong, N. Van Dyk, I.M. Wallace, J.A. Whitney, M.T. Weirauch, G. Zhong, H. Zhu, W.A. Houry, M. Brudno, S. Ragibizadeh, B. Papp, C. Pál, F.P. Roth, G. Giaever, C. Nislow, O.G. Troyanskaya, H. Bussey, G.D. Bader, A.C. Gingras, Q.D. Morris, P.M. Kim, C.A. Kaiser, C.L. Myers, B.J. Andrews, and C. Boone. 2010. The genetic landscape of a cell. Science 327: 425–431.

    Article  CAS  PubMed  Google Scholar 

  • Cui, M., F.Z. Chung, and C.J. Donahue. 2008. Development of a robust GABA(B) calcium signaling cell line using beta-lactamase technology and sorting. Cytometry Part A 73: 761–766.

    Article  Google Scholar 

  • Derisi, J., L. Penland, P.O. Brown, M.L. Bittner, P.S. Meltzer, M. Ray, Y. Chen, and Y.A. Su. 1996. Trent JM Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genetics 14: 457–460.

    Article  CAS  PubMed  Google Scholar 

  • Devkota, A.K., M. Warthaka, R. Edupuganti, C.D. Tavares, W.H. Johnson, B. Ozpolat, E.J. Cho, and K.N. Dalby. 2014. High-throughput screens for eEF-2 kinase. Journal of Biomolecular Screening 19: 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Drews, J. 2000. Drug discovery: A historical perspective. Science 287: 1960–1964.

    Article  CAS  PubMed  Google Scholar 

  • Du, Y. 2015. Fluorescence polarization assay to quantify protein-protein interactions in an HTS format. Methods in Molecular Biology 1278: 529–544.

    Article  PubMed  Google Scholar 

  • Eggert, U.S., A.A. Kiger, C. Richter, Z.E. Perlman, N. Perrimon, T.J. Mitchison, and C.M. Field. 2004. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biology 2: e379.

    Article  PubMed Central  PubMed  Google Scholar 

  • Emilien, G., M. Ponchon, C. Caldas, O. Isacson, and J.M. Maloteaux. 2000. Impact of genomics on drug discovery and clinical medicine. QJM 93: 391–423.

    Article  CAS  PubMed  Google Scholar 

  • Farha, M.A., and E.D. Brown. 2010. Chemical probes of Escherichia coli uncovered through chemical-chemical interaction profiling with compounds of known biological activity. Chemistry & Biology 17: 852–862.

    Article  CAS  Google Scholar 

  • Flanagan, M.E., T.A. Blumenkopf, W.H. Brissette, M.F. Brown, J.M. Casavant, C. Shang-Poa, J.L. Doty, E.A. Elliott, M.B. Fisher, M. Hines, C. Kent, E.M. Kudlacz, B.M. Lillie, K.S. Magnuson, S.P. Mccurdy, M.J. Munchhof, B.D. Perry, P.S. Sawyer, T.J. Strelevitz, C. Subramanyam, J. Sun, D.A. Whipple, and P.S. Changelian. 2010. Discovery of CP-690,550: A potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. Journal of Medicinal Chemistry 53: 8468–8484.

    Article  CAS  PubMed  Google Scholar 

  • Freedland, S.J., D.B. Seligson, A.Y. Liu, A.J. Pantuck, S.H. Paik, S. Horvath, J.A. Wieder, A. Zisman, D. Nguyen, C.L. Tso, A.V. Palotie, and A.S. Belldegrun. 2003. Loss of CD10 (neutral endopeptidase) is a frequent and early event in human prostate cancer. The Prostate 55: 71–80.

    Article  PubMed  Google Scholar 

  • Greenbaum, D.C., A. Baruch, M. Grainger, Z. Bozdech, K.F. Medzihradszky, J. Engel, J. Derisi, A.A. Holder, and M. Bogyo. 2002. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298: 2002–2006.

    Article  CAS  PubMed  Google Scholar 

  • Hall, D.A., J. Ptacek, and M. Snyder. 2007. Protein microarray technology. Mechanisms of Ageing and Development 128: 161–167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hemmilä, I.A., and P. Hurskainen. 2002. Novel detection strategies for drug discovery. Drug Discovery Today 7: S150–S156.

    Article  PubMed  Google Scholar 

  • Henjes, F., L. Lourido, C. Ruiz-Romero, J. Fernandez-Tajes, J.M. Schwenk, M. Gonzalez-Gonzalez, F.J. Blanco, P. Nilsson, and M. Fuentes. 2014. Analysis of autoantibody profiles in osteoarthritis using comprehensive protein array concepts. Journal of Proteome Research 13: 5218–5229.

    Article  CAS  PubMed  Google Scholar 

  • Ho, C.H., L. Magtanong, S.L. Barker, D. Gresham, S. Nishimura, P. Natarajan, J.L.Y. Koh, J. Porter, C.A. Gray, R.J. Andersen, G. Giaever, C. Nislow, B. Andrews, D. Botstein, T.R. Graham, M. Yoshida, and C. Boone. 2009. A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nature Biotechnology 27: 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Howes, R., X. Barril, B.W. Dymock, K. Grant, C.J. Northfield, A.G. Robertson, A. Surgenor, J. Wayne, L. Wright, K. James, T. Matthews, K.M. Cheung, E. Mcdonald, P. Workman, and M.J. Drysdale. 2006. A fluorescence polarization assay for inhibitors of Hsp90. Analytical Biochemistry 350: 202–213.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., H. Zhu, S.J. Haggarty, D.R. Spring, H. Hwang, F. Jin, M. Snyder, and S.L. Schreiber. 2004. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proceedings of the National Academy of Sciences of the United States of America 101: 16594–16599.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hughes, J.P., S. Rees, S.B. Kalindjian, and K.L. Philpott. 2011. Principles of early drug discovery. British Journal of Pharmacology 162: 1239–1249.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imming, P., C. Sinning, and A. Meyer. 2006. Drugs, their targets and the nature and number of drug targets. Nature Reviews Drug Discovery 5: 821–834.

    Article  CAS  PubMed  Google Scholar 

  • Jeffery, D.A., and M. Bogyo. 2003. Chemical proteomics and its application to drug discovery. Current Opinion in Biotechnology 14: 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Jhanker, Y.M. 2012. Proteomics in drug discovery. Journal of Applied Pharmaceutical Science. doi:10.7324/japs.2012.2801.

    Google Scholar 

  • Jiang, J.K., K. Ghoreschi, F. Deflorian, Z. Chen, M. Perreira, M. Pesu, J. Smith, D.T. Nguyen, E.H. Liu, W. Leister, S. Costanzi, J.J. O’shea, and C.J. Thomas. 2008. Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550). Journal of Medicinal Chemistry 51: 8012–8018.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapp, U., W.C. Yeh, B. Patterson, A.J. Elia, D. Kagi, A. Ho, A. Hessel, M. Tipsword, A. Williams, C. Mirtsos, A. Itie, M. Moyle, and T.W. Mak. 1999. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. The Journal of Experimental Medicine 189: 1939–1946.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirkpatrick, A., J. Heo, R. Abrol, and W.A. Goddard. 2012. Predicted structure of agonist-bound glucagon-like peptide 1 receptor, a class B G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America 109: 19988–19993.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kremer, J.M., B.J. Bloom, F.C. Breedveld, J.H. Coombs, M.P. Fletcher, D. Gruben, S. Krishnaswami, R. Burgos-Vargas, B. Wilkinson, C.A. Zerbini, and S.H. Zwillich. 2009. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: Results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis and Rheumatism 60: 1895–1905.

    Article  CAS  PubMed  Google Scholar 

  • Lavinder, J.J., S.B. Hari, B.J. Sullivan, and T.J. Magliery. 2009. High-throughput thermal scanning: A general, rapid dye-binding thermal shift screen for protein engineering. Journal of the American Chemical Society 131: 3794–3795.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, K., J. Campbell, J.G. Swoboda, G.D. Cuny, and S. Walker. 2010. Development of improved inhibitors of wall teichoic acid biosynthesis with potent activity against Staphylococcus aureus. Bioorganic & Medicinal Chemistry Letters 20: 1767–1770.

    Article  CAS  Google Scholar 

  • Li, Q.Y., M.K. Xu, G. Liu, C.T. Christoffersen, and M.W. Wang. 2013a. Discovery of novel PDE10 inhibitors by a robust homogeneous screening assay. Acta Pharmacologica Sinica 34: 1116–1120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, X., X. Wang, and M. Snyder. 2013b. Systematic investigation of protein-small molecule interactions. IUBMB Life 65: 2–8.

    Article  CAS  PubMed  Google Scholar 

  • Lomenick, B., R.W. Olsen, and J. Huang. 2011. Identification of direct protein targets of small molecules. ACS Chemical Biology 6: 34–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macallan, D., J. Sohal, C. Walker, D. Hill, and M. Moore. 1997. Development of a novel TNF alpha ligand-receptor binding assay for screening. NATCHEM Libraries Journal of Receptor and Signal Transduction Research 17: 521–529.

    Article  CAS  PubMed  Google Scholar 

  • Macbeath, G., and S.L. Schreiber. 2000. Printing proteins as microarrays for high-throughput function determination. Science 289: 1760–1763.

    CAS  PubMed  Google Scholar 

  • Mandel, S., O. Weinreb, and M.B. Youdim. 2003. Using cDNA microarray to assess Parkinson’s disease models and the effects of neuroprotective drugs. Trends in Pharmacological Sciences 24: 184–191.

    Article  CAS  PubMed  Google Scholar 

  • Mezler, M., D. Hermann, A.M. Swensen, A. Draguhn, G.C. Terstappen, G. Gross, H. Schoemaker, G. Freiberg, S. Pratt, S.M. Gopalakrishnan, and V. Nimmrich. 2012. Development and validation of a fluorescence-based HTS assay for the identification of P/Q-type calcium channel blockers. Combinatorial Chemistry & High-Throughput Screening 15: 372–385.

    Article  CAS  Google Scholar 

  • Molina, D.M., R. Jafari, M. Ignatushchenko, and T. Seki. 2013. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341: 84–88.

    Article  CAS  Google Scholar 

  • Mora-Duarte, J., R. Betts, C. Rotstein, A.L. Colombo, L. Thompson-Moya, J. Smietana, R. Lupinacci, C. Sable, N. Kartsonis, and J. Perfect. 2002. Comparison of caspofungin and amphotericin B for invasive candidiasis. New England Journal of Medicine 347: 2020–2029.

    Article  CAS  PubMed  Google Scholar 

  • Naylor, L.H. 1999. Reporter gene technology: The future looks bright. Biochemical Pharmacology 58: 749–757.

    Article  CAS  PubMed  Google Scholar 

  • Oh, K.S., S. Lee, J.K. Choi, and B.H. Lee. 2010. Identification of novel scaffolds for IkappaB kinase beta inhibitor via a high-throughput screening TR-FRET assay. Combinatorial Chemistry & High-Throughput Screening 13: 790–797.

    Article  CAS  Google Scholar 

  • Ong, S.E., M. Schenone, A.A. Margolin, X. Li, K. Do, M.K. Doud, D.R. Mani, L. Kuai, X. Wang, J.L. Wood, N.J. Tolliday, A.N. Koehler, L.A. Marcaurelle, T.R. Golub, R.J. Gould, S.L. Schreiber, and S.A. Carr. 2009. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proceedings of the National Academy of Sciences of the United States of America 106: 4617–4622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Overington, J.P., B. Al-Lazikani, and A.L. Hopkins. 2006. How many drug targets are there? Nature Reviews Drug Discovery 5: 993–996.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y.W., R.T. Cummings, L. Wu, S. Zheng, P.M. Cameron, A. Woods, D.M. Zaller, A.I. Marcy, and J.D. Hermes. 1999. Homogeneous proximity tyrosine kinase assays: Scintillation proximity assay versus homogeneous time-resolved fluorescence. Analytical Biochemistry 269: 94–104.

    Article  CAS  PubMed  Google Scholar 

  • Raphemot, R., R.J. Kadakia, M.L. Olsen, S. Banerjee, E. Days, S.S. Smith, C.D. Weaver, and J.S. Denton. 2013. Development and validation of fluorescence-based and automated patch clamp-based functional assays for the inward rectifier potassium channel Kir41. Assay and Drug Development Technologies 11: 532–543.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rickardson, L., M. Fryknas, S. Dhar, H. Lovborg, J. Gullbo, M. Rydaker, P. Nygren, M.G. Gustafsson, R. Larsson, and A. Isaksson. 2005. Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles. British Journal of Cancer 93: 483–492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Suarez, R., D. Xu, K. Veillette, J. Davison, S. Sillaots, S. Kauffman, W. Hu, J. Bowman, N. Martel, S. Trosok, H. Wang, L. Zhang, L.Y. Huang, Y. Li, F. Rahkhoodaee, T. Ransom, D. Gauvin, C. Douglas, P. Youngman, J. Becker, B. Jiang, and T. Roemer. 2007. Mechanism-of-action determination of GMP synthase inhibitors and target validation in Candida albicans and Aspergillus fumigatus. Chemistry & Biology 14: 1163–1175.

    Article  CAS  Google Scholar 

  • Roemer, T., J. Davies, G. Giaever, and C. Nislow. 2012. Bugs, drugs and chemical genomics. Nature Chemical Biology 8: 46–56.

    Article  CAS  Google Scholar 

  • Schlyer, S., and R. Horuk. 2006. I want a new drug: G-protein-coupled receptors in drug development. Drug Discovery Today 11: 481–493.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, N., K. Sugimoto, J. Tang, T. Nishi, I. Sato, M. Hiramoto, S. Aizawa, M. Hatakeyama, R. Ohba, H. Hatori, T. Yoshikawa, F. Suzuki, A. Oomori, H. Tanaka, H. Kawaguchi, H. Watanabe, and H. Handa. 2000. High-performance affinity beads for identifying drug receptors. Nature Biotechnology 18: 877–881.

    Article  CAS  PubMed  Google Scholar 

  • Sneader, W.E. 2001. History of drug discovery. New York: Wiley. doi:10.1038/npg.els.0003090.

    Book  Google Scholar 

  • Terstappen, G.C., C. Schlupen, R. Raggiaschi, and G. Gaviraghi. 2007. Target deconvolution strategies in drug discovery. Nature Reviews Drug Discovery 6: 891–903.

    Article  CAS  PubMed  Google Scholar 

  • The World Health Organization (WHO) database [Online]. Accessed March 15, 2015, from http://apps.who.int/gho/data/?theme=main.

  • Tzogani, K., N. Nagercoil, R.J. Hemmings, B. Samir, J. Gardette, P. Demolis, T. Salmonson, and F. Pignatti. 2014. The European Medicines Agency approval of ingenol mebutate (Picato) for the cutaneous treatment of non-hyperkeratotic, non-hypertrophic actinic keratosis in adults: Summary of the scientific assessment of the Committee for Medicinal Products for Human Use (CHMP). European Journal of Dermatology 24: 457–463.

    CAS  PubMed  Google Scholar 

  • Waldron, T.T., and K.P. Murphy. 2003. Stabilization of proteins by ligand binding: Application to drug screening and determination of unfolding energetics. Biochemistry 42: 5058–5064.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C.J., S.H. Hsu, W.T. Hung, and C.W. Luo. 2009. Establishment of a chimeric reporting system for the universal detection and high-throughput screening of G protein-coupled receptors. Biosensors & Bioelectronics 24: 2298–2304.

    Article  CAS  Google Scholar 

  • Wang, K., L. Gan, E. Jeffery, M. Gayle, A.M. Gown, M. Skelly, P.S. Nelson, W.V. Ng, M. Schummer, L. Hood, and J. Mulligan. 1999a. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene 229: 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., T. Rea, J. Bian, S. Gray, and Y. Sun. 1999b. Identification of the genes responsive to etoposide-induced apoptosis: Application of DNA chip technology. FEBS Letters 445: 269–273.

    Article  CAS  PubMed  Google Scholar 

  • Wu, B., J. Gao, and M.W. Wang. 2005. Development of a complex scintillation proximity assay for high-throughput screening of PPARγ modulators. Acta Pharmacologica Sinica 26: 339–344.

    Article  CAS  PubMed  Google Scholar 

  • Wu, P., M. Brasseur, and U. Schindler. 1997. A high-throughput STAT binding assay using fluorescence polarization. Analytical Biochemistry 249: 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Xu, D., B. Jiang, T. Ketela, S. Lemieux, K. Veillette, N. Martel, J. Davison, S. Sillaots, S. Trosok, C. Bachewich, H. Bussey, P. Youngman, and T. Roemer. 2007. Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathogens 3: e92.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu, D., J. Ondeyka, G.H. Harris, D. Zink, J.N. Kahn, H. Wang, G. Bills, G. Platas, W. Wang, A.A. Szewczak, P. Liberator, T. Roemer, and S.B. Singh. 2011. Isolation, structure, and biological activities of Fellutamides C and D from an undescribed Metulocladosporiella (Chaetothyriales) using the genome-wide Candida albicans fitness test. Journal of Natural Products 74: 1721–1730.

    Article  CAS  PubMed  Google Scholar 

  • Yan, J.H., Q.Y. Li, J.A. Boutin, M.P. Renard, Y.X. Ding, X.J. Hao, W.M. Zhao, and M.W. Wang. 2008. High-throughput screening of novel antagonists on melanin-concentrating hormone receptor-1. Acta Pharmacologica Sinica 29: 752–758.

    Article  CAS  PubMed  Google Scholar 

  • Zang, R., J. Wang, and S.T. Yang. 2012. Cell-based assays in high-throughput screening for drug discovery. International Journal of Biotechnology for Wellness Industries 1: 31–51.

    CAS  Google Scholar 

  • Zhang, R., P.K. Yan, C.H. Zhou, J.Y. Liao, and M.W. Wang. 2007. Development of a homogeneous calcium mobilization assay for high throughput screening of mas-related gene receptor agonists. Acta Pharmacologica Sinica 28: 125–131.

    Article  PubMed  Google Scholar 

  • Zhu, H., J.F. Klemic, S. Chang, P. Bertone, A. Casamayor, K.G. Klemic, D. Smith, M. Gerstein, M.A. Reed, and M. Snyder. 2000. Analysis of yeast protein kinases using protein chips. Nature Genetics 26: 283–289.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Health and Family Planning Commission (2012ZX09304-011, 2013ZX09401003-005, 2013ZX09507001 and 2013ZX09507-002), Shanghai Science and Technology Development Fund (13DZ2290300 and 15DZ2291600), the CAS-Novo Nordisk Research Fund and the Thousand Talents Program in China. It was inspired by the international and interdisciplinary environments of the JSPS Asian CORE Program, “Asian Chemical Biology Initiative”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Wei Wang.

Ethics declarations

Conflict of interest

We declare that we do not have any financial or personal relationships with other people or organizations that can inappropriately influence the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Xiao, T., Lei, S. et al. Application of chemical biology in target identification and drug discovery. Arch. Pharm. Res. 38, 1642–1650 (2015). https://doi.org/10.1007/s12272-015-0643-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0643-2

Keywords

Navigation