Skip to main content
Log in

Antiangiogenic activity of herboxidiene via downregulation of vascular endothelial growth factor receptor-2 and hypoxia-inducible factor-1α

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Antiangiogenesis is now thought of as one of the most important approaches for anticancer therapy. In this study, we determined the antiangiogenic property of herboxidiene, a polyketide natural product. Herboxidiene effectively inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) at concentrations not exhibiting cytotoxicity. Furthermore, the natural product significantly suppressed vascular endothelial growth factor-induced invasion and tube formation in HUVECs as well as neovascularization of the chorioallantoic membrane in developing chick embryos. We also identified an association between the antiangiogenic activity of herboxidiene and the downregulation of both the phosphorylation of VEGF receptor 2 (KDR/Flk-1) and the expression of hypoxia-inducible factor-1α at the transcriptional level. These results suggest that herboxidiene functions as a potential antiangiogenic agent and may be applicable for anticancer therapy by targeting tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alphen, R.J., E. Wiemer, H. Burger, and F.A. Eskens. 2009. The spliceosome as target for anticancer treatment. British Journal of Cancer 100: 228–232.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bussolino, F., A. Mantovani, and G. Persico. 1997. Molecular mechanisms of blood vessel formation. Trends in Biochemical Sciences 22: 251–256.

    Article  CAS  PubMed  Google Scholar 

  • Cardones, A.R., and L.L. Banez. 2006. VEGF inhibitors in cancer therapy. Current Pharmaceutical Design 12: 387–394.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet, P. 2005. VEGF as a key mediator of angiogenesis in cancer. Oncology 69: 4–10.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet, P., and R.K. Jain. 2000. Angiogenesis in cancer and other diseases. Nature 407: 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Eskens, F.A., and J. Verweij. 2006. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. European Journal of Cancer 42: 3127–3139.

    Article  CAS  PubMed  Google Scholar 

  • Faivre, S., G. Demetri, W. Sargent, and E. Raymond. 2007. Molecular basis for sunitinib efficacy and future clinical development. Nature Reviews Drug Discovery 6: 734–745.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, N. 2004. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 9: 2–10.

    Article  CAS  PubMed  Google Scholar 

  • Folkman, J. 1995. Clinical applications of research on angiogenesis. The New England Journal of Medicine 235: 1757–1763.

    Google Scholar 

  • Forsythe, J.A., B.H. Jiang, N.V. Iyer, F. Agani, S.W. Leung, R.D. Koos, and G.L. Semenza. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology 16: 4604–4613.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao, Y., A. Vogt, C.J. Forsyth, and K. Koide. 2013. Comparison of splicing factor 3b inhibitors in human cells. ChemBioChem 14: 49–52.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., and J. Folkman. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Hanrahan, E.O., and J.V. Heymach. 2007. Vascular endothelial growth factor receptor tyrosine kinase inhibitors vandetanib (ZD6474) and AZD2171 in lung cancer. Clinical Cancer Research 13: s4617–s4622.

    Article  PubMed  Google Scholar 

  • Hasegawa, M., T. Miura, K. Kuzuya, A. Inoue, S.W. Ki, S. Horinouchi, T. Yoshida, T. Kunoh, K. Koseki, and K. Mino. 2011. Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product. American Chemical Society Chemical Biology 6: 229–233.

    CAS  PubMed  Google Scholar 

  • Höckel, M., and P. Vaupel. 2001. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. Journal of the National Cancer Institute 93: 266–276.

    Article  PubMed  Google Scholar 

  • Hoeben, A., B. Landuyt, M.S. Highley, H. Wildiers, A.T. Van Oosterom, and E.A. De Bruijn. 2004. Vascular endothelial growth factor and angiogenesis. Pharmacological Reviews 56: 549–580.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, K., O.L. Roberts, A.M. Thomas, and M.J. Cross. 2007. Vascularendothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular Signalling 19: 2003–2012.

    Article  CAS  PubMed  Google Scholar 

  • Isaac, B.G., S.W. Ayer, R.C. Elliott, and R.J. Stonard. 1992. Herboxidiene: a potent phytotoxic polyketide from Streptomyces sp. A7847. The Journal of Organic Chemistry 57: 7220–7226.

    Article  CAS  Google Scholar 

  • Jung, H.J., H.B. Lee, C.J. Kim, J.R. Rho, J. Shin, and H.J. Kwon. 2003. Anti-angiogenic activity of terpestacin, a bicycle sesterterpene from Embellisia chlamydospora. The Journal of Antibiotics 56: 492–496.

    Article  CAS  PubMed  Google Scholar 

  • Kaida, D., H. Motoyoshi, E. Tashiro, T. Nojima, M. Hagiwara, K. Ishigami, H. Watanabe, T. Kitahara, T. Yoshida, H. Nakajima, T. Tani, S. Horinouchi, and M. Yoshida. 2007. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nature Chemical Biology 3: 576–583.

    Article  CAS  PubMed  Google Scholar 

  • Koguchi, Y., M. Nishio, J. Kotera, K. Omori, T. Ohnuki, and S. Komatsubara. 1997. Trichostatin A and herboxidiene up-regulate the gene expression of low density lipoprotein receptor. The Journal of Antibiotics 50: 970–971.

    Article  CAS  PubMed  Google Scholar 

  • Kotake, Y., K. Sagane, T. Owa, Y. Mimori-Kiyosue, H. Shimizu, M. Uesugi, Y. Ishihama, M. Iwata, and Y. Mizui. 2007. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nature Chemical Biology 3: 570–575.

    Article  CAS  PubMed  Google Scholar 

  • Lagisetti, C., M.V. Yermolina, L.K. Sharma, G. Palacios, B.J. Prigaro, and T.R. Webb. 2014. Pre-mRNA splicing-modulatory pharmacophores: the total synthesis of herboxidiene, a pladienolide-herboxidiene hybrid analog and related derivatives. American Chemical Society Chemical Biology 9: 643–648.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matsumoto, T., and L. Claesson-Welsh. 2001. VEGF receptor signal transduction. Science’s Signal Transduction Knowledge Environment 112:re21.

  • Olsson, A.K., A. Dimberg, J. Kreuger, and L. Claesson-Welsh. 2006. VEGF receptor signaling in control of vascular function. Nature Reviews Molecular Cell Biology 7: 359–371.

    Article  CAS  PubMed  Google Scholar 

  • Pugh, C.W., and P.J. Ratcliffe. 2003. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Medicine 9: 677–684.

    Article  CAS  PubMed  Google Scholar 

  • Sakai, Y., T. Tsujita, T. Akiyama, T. Yoshida, T. Mizukami, S. Akinaga, S. Horinouchi, M. Yoshida, and T. Yoshida. 2002a. GEX1 compounds, novel antitumor antibiotics related to herboxidiene, produced by Streptomyces sp. II. The effects on cell cycle progression and gene expression. The Journal of Antibiotics 55: 863–872.

    Article  CAS  PubMed  Google Scholar 

  • Sakai, Y., T. Yoshida, K. Ochiai, Y. Uosaki, Y. Saitoh, F. Tanaka, T. Akiyama, S. Akinaga, and T. Mizukami. 2002b. GEX1 compounds, novel antitumor antibiotics related to herboxidiene, produced by Streptomyces sp. I. Taxonomy, production, isolation, physicochemical properties and biological activities. The Journal of Antibiotics 55: 855–862.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G.L. 2003. Targeting HIF-1 for cancer therapy. Nature Reviews Cancer 3: 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Verheul, H.M., and H.M. Pinedo. 2007. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nature Reviews Cancer 7: 475–485.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by grants from the National Research Foundation of Korea (NRF) funded by the Korean Government (2010-0017984 and 2012M3A9D1054520), the Translational Research Center for Protein Function Control, KRF (2009-0083522), the Ministry of Health & Welfare (0620360-1), the Basic Science Research Program, the Ministry of Education (NRF-2014R1A1A2057902), and the Brain Korea 21 Plus Project, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Jeong Kwon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Hye Jin Jung and Yonghyo Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H.J., Kim, Y., Shin, J.Y. et al. Antiangiogenic activity of herboxidiene via downregulation of vascular endothelial growth factor receptor-2 and hypoxia-inducible factor-1α. Arch. Pharm. Res. 38, 1728–1735 (2015). https://doi.org/10.1007/s12272-015-0625-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0625-4

Keywords

Navigation