Skip to main content
Log in

Saponin from the fruit of Solanum anguivi protects against oxidative damage mediated by Fe2+ and sodium nitroprusside in rat brain synaptosome P2 fraction

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Solanum anguivi fruit saponin has antidiabetic property via interference with cellular energy metabolism and inhibition of reactive oxygen species (ROS) generation. In the current study, brain specific in vitro anti-oxidant role of S. anguivi saponin was investigated in the P2 synaptosomal fraction of rat brain. Using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay, S. anguivi saponin concentration- dependently (10–200 µg/ml) reversed Fe2+ and sodium nitroprusside- induced decrease in mitochondrial activity via inhibition of ROS production, ROS-induced oxidation of protein and non-protein thiol-containing molecules and lipid peroxidation as measured by thiobarbituric acid reactive substances levels. Conclusively, S. anguivi fruit saponin represents a class of natural compounds with the ability to reverse synaptosomal disruption, loss of mitochondrial integrity and function often associated with the progression of Huntington’s disease, Alzheimer disease, Parkinson disease and amyotrophic lateral sclerosis diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apel, K., and H. Hirt. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55: 373–399. doi:10.1146/annurev.arplant.55.031903.141701.

    Article  CAS  PubMed  Google Scholar 

  • Bilgic, B., A. Pfefferbaum, T. Rohlfing, E.V. Sullivan, and E. Adalsteinsson. 2012. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage 59: 2625–2635. doi:10.1016/j.neuroimage.2011.08.077.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Cavallucci, V., A. Nobili, and M. D’Amelio. 2013. Emerging role of mitochondria dysfunction in the onset of neurodegenerative diseases. Journal of Biological Regulators and Homeostatic Agents 27(2): 1–9.

    CAS  PubMed  Google Scholar 

  • Dawn-Linsley, M., F.J. Ekinci, D. Ortiz, E. Rogers, and T.B. Shea. 2005. Monitoring thiobarbituric acid-reactive substances (TBARs) as an assay for oxidative damage in neuronal cultures and central nervous system. Journal of Neuroscience Methods 141: 219–222. doi:10.1016/j.jneumeth.2004.06.010.

    Article  CAS  PubMed  Google Scholar 

  • Dunkley, P.R., P.E. Jarvie, and P.J. Robinson. 2008. A rapid Percoll gradient procedure for preparation of synaptosomes. Nature Protocols 3: 1718–1728. doi:10.1038/nprot.2008.171.

    Article  CAS  PubMed  Google Scholar 

  • Elekofehinti, O.O., J.P. Kamdem, A.A. Bolingon, M.L. Athayde, S.R. Lopes, E.P. Waczuk, and J.B.T. Rocha. 2013. African eggplant (Solanum anguivi Lam.) fruit with bioactive polyphenolic compounds exerts in vitro antioxidant properties and inhibits Ca(2+)-induced mitochondrial swelling. Asian Pacific Journal of Tropical Biomedicine 3: 757–766. doi:10.1016/S2221-1691(13)60152-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feig, D.I., T.M. Reid, and L.A. Loeb. 1994. Reactive oxygen species in tumorigenesis. Cancer Research 54: 1890s–1894s.

    CAS  PubMed  Google Scholar 

  • Inoguchi, T., T. Sonta, H. Tsubouchi, T. Etoh, M. Kakimoto, N. Sonoda, and H. Nawata. 2003. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD(P)H oxidase. Journal of the American Society of Nephrology 14(8 Suppl 3): S227–S232.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, C.I., V. Zerbi, M.P. Mutsaers, B.S. de Jong, M. Wiesmann, I.A. Arnoldussen, and A.J. Kiliaan. 2014. Impact of dietary n-3 polyunsaturated fatty acids on cognition, motor skills and hippocampal neurogenesis in developing C57BL/6J mice. Journal of Nutritional Biochemistry. doi:10.1016/j.jnutbio.2014.08.002.

    PubMed  Google Scholar 

  • Kuznetsov, A.V., V. Veksler, F.N. Gellerich, V. Saks, R. Margreiter, and W.S. Kunz. 2008. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nature Protocols 3: 965–976. doi:10.1038/nprot.2008.61.

    Article  CAS  PubMed  Google Scholar 

  • Magni, D.V., A.F. Furian, M.S. Oliveira, M.A. Souza, F. Lunardi, J. Ferreira, and M.R. Fighera. 2009. Kinetic characterization of l-[(3)H]glutamate uptake inhibition and increase oxidative damage induced by glutaric acid in striatal synaptosomes of rats. International Journal of Developmental Neuroscience 27: 65–72. doi:10.1016/j.ijdevneu.2008.09.004.

    Article  CAS  PubMed  Google Scholar 

  • Majinda, R.R. 2012. Extraction and isolation of saponins. Methods in Molecular Biology 864: 415–426. doi:10.1007/978-1-61779-624-1_16.

    Article  CAS  PubMed  Google Scholar 

  • Malireddy, S., S.R. Kotha, J.D. Secor, T.O. Gurney, J.L. Abbott, G. Maulik, and N.L. Parinandi. 2012. Phytochemical antioxidants modulate mammalian cellular epigenome: Implications in health and disease. Antioxidants & Redox Signaling 17: 327–339. doi:10.1089/ars.2012.4600.

    Article  CAS  Google Scholar 

  • Martinez, A., R.A. Munoz-Clares, G. Guerra, J. Moran, and H. Pasantes-Morales. 1994. Sulfhydryl groups essential for the volume-sensitive release of taurine from astrocytes. Neuroscience Letters 176: 239–242.

    Article  CAS  PubMed  Google Scholar 

  • Mates, J.M. 2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153: 83–104.

    Article  CAS  PubMed  Google Scholar 

  • Pfefferbaum, A., E. Adalsteinsson, T. Rohlfing, and E.V. Sullivan. 2009. MRI estimates of brain iron concentration in normal aging: Comparison of field-dependent (FDRI) and phase (SWI) methods. Neuroimage 47: 493–500. doi:10.1016/j.neuroimage.2009.05.006.

    Article  PubMed Central  PubMed  Google Scholar 

  • Reddy, P.H. 2009. Role of mitochondria in neurodegenerative diseases: Mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectrums 14(8 Suppl 7): 8–13. discussion 16–18.

    PubMed Central  PubMed  Google Scholar 

  • Rego, A.C., and C.R. Oliveira. 2003. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochemical Research 28: 1563–1574.

    Article  CAS  PubMed  Google Scholar 

  • Riss, T.L., R.A. Moravec, A.L. Niles, H.A. Benink, T.J. Worzella, and L. Minor. 2004. Cell viability assays. In Assay guidance manual, ed. G.S. Sittampalam, N. Gal-Edd, M. Arkin, D. Auld, C. Austin, B. Bejcek, M. Glicksman, J. Inglese, V. Lemmon, Z. Li, J. McGee, O. McManus, L. Minor, A. Napper, T. Riss, O.J. Trask, and J. Weidner. Bethesda: Eli Lilly & Company.

    Google Scholar 

  • Robillard, G.T., J.M. Schaaf, and A.W. Teelken. 1987. Dithiols and monothiols are linked with GABA transport in membrane vesicles of rat brain synaptosomes. FEBS Letters 224: 391–395.

    Article  CAS  PubMed  Google Scholar 

  • Seligman, J., G.L. Newton, R.C. Fahey, R. Shalgi, and N.S. Kosower. 2005. Nonprotein thiols and disulfides in rat epididymal spermatozoa and epididymal fluid: Role of gamma-glutamyl-transpeptidase in sperm maturation. Journal of Andrology 26: 629–637. doi:10.2164/jandrol.05040. discussion 638–640.

    Article  CAS  PubMed  Google Scholar 

  • Siman, R., M. Baudry, and G. Lynch. 1983. Purification from synaptosomal plasma membranes of calpain I, a thiol protease activated by micromolar calcium concentrations. Journal of Neurochemistry 41: 950–956.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J.S., Z.Y. Qiu, H.Z. Li, Y.P. Xia, and C.L. Zhou. 2007. Effect of total saponins of Rubus parviflolius (TSRP) on change of hydrated amount and blood-brain barrier in rats during focal cerebral ischemic/reperfusion. Zhongguo Zhong Yao Za Zhi 32: 2166–2169.

    PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Elekofehinti Olusola appreciates the financial assistance from the Educational Trust Fund, Nigeria. Dr. Omotuyi I.O. is also appreciated for proof reading the manuscript. Dr. Kamdem would like to thank CAPES, CNPq TWAS-CNPq for the financial support.

Conflict of interest

The authors declare no conflict of interest with any person or any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olusola Olalekan Elekofehinti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elekofehinti, O.O., Kamdem, J.P., Meinerz, D.F. et al. Saponin from the fruit of Solanum anguivi protects against oxidative damage mediated by Fe2+ and sodium nitroprusside in rat brain synaptosome P2 fraction. Arch. Pharm. Res. (2015). https://doi.org/10.1007/s12272-014-0536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12272-014-0536-9

Keywords

Navigation