Skip to main content
Log in

Anti-angiogenic activity of macrolactin A and its succinyl derivative is mediated through inhibition of class I PI3K activity and its signaling

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In the current study, macrolactin compounds, macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), were investigated for their anti-angiogenic activities and action mechanism. MA and SMA inhibited in vitro and in vivo angiogenesis induced by three different classes of pro-angiogenic factors, VEGF, IL-8, and TNF-α. SMA exhibited stronger anti-angiogenic activity than MA, and such anti-angiogenic activity of SMA was consistently observed in MDA-MB-231 human breast cancer cell-inoculated CAM assay showing dose-dependent suppression of tumor growth and tumor-induced angiogenesis. In an in vitro PI3K competitive activity assay, SMA induced concentration-dependent inhibition of class I PI3K isoforms, p110α, p110β, p110δ, and p110γ. In addition, non-receptor tyrosine kinase c-Src, which is involved in the activation of PI3K heterodimer, was suppressed by MA and SMA. Correspondingly, MA and SMA significantly inhibited the stimulus-induced phosphorylation of Akt, mTOR, p70S6K, and ribosomal S6 in human umbilical vein endothelial cells (HUVECs). At the same time, the stimulus-induced production of reactive oxygen species (ROS) and activation of NF-κB were significantly suppressed by MA and SMA. Moreover, the macrolactins suppressed NF-κB-regulated HSP90 protein expression, which stabilizes phosphorylated Akt and NADPH oxidase. Suppression of NF-κB in macrolactin-treated HUVECs with concurrent inhibition of rS6 indicates that MAs effectively block angiogenesis through down-regulation of genes related to angiogenesis at both transcriptional and translational levels. Taken together, the results demonstrate that anti-angiogenic effect of MA and SMA is mediated through inhibition of PI3K/Akt and NADPH oxidase-derived ROS/NF-κB signaling pathways. These results further indicate that MA and SMA may be applicable for treatment of various diseases associated with angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta, J.C., A. O’Loghlen, A. Banito, M.V. Guijarro, A. Augert, S. Raguz, M. Fumagalli, et al. 2008a. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133(6): 1006–1018.

    Article  CAS  PubMed  Google Scholar 

  • Acosta, J.C., A. O’Loghlen, A. Banito, S. Raguz, and J. Gil. 2008b. Control of senescence by CXCR2 and its ligands. Cell Cycle 7(19): 2956–2959.

    Article  CAS  PubMed  Google Scholar 

  • Akinleye, A., P. Avvaru, M. Furqan, Y. Song, and D. Liu. 2013. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. Journal of Hematology and Oncology 6(1): 88.

    Article  PubMed Central  PubMed  Google Scholar 

  • Andreev, J., M.L. Galisteo, O. Kranenburg, S.K. Logan, E.S. Chiu, M. Okigaki, L.A. Cary, W.H. Moolenaar, and J. Schlessinger. 2001. Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor (EGFR) but are not required for coupling to the mitogen-activated protein (MAP) kinase signaling cascade. Journal of Biological Chemistry 276(23): 20130–20135.

    Article  CAS  PubMed  Google Scholar 

  • Backer, J.M., M.G. Myers Jr, S.E. Shoelson, D.J. Chin, X.J. Sun, M. Miralpeix, P. Hu, et al. 1992. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. The EMBO Journal 11(9): 3469–3479.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bader, A.G., S. Kang, L. Zhao, and P.K. Vogt. 2005. Oncogenic PI3K deregulates transcription and translation. Nature Reviews Cancer 5(12): 921–929.

    Article  CAS  PubMed  Google Scholar 

  • Banning, A., N. Kurrle, M. Meister, and R. Tikkanen. 2014. Flotillins in receptor tyrosine kinase signaling and cancer. Cells 3(1): 129–149.

    Article  PubMed Central  PubMed  Google Scholar 

  • Barcelos, L.S., A. Talvani, A.S. Teixeira, L.Q. Vieira, G.D. Cassali, S.P. Andrade, and M.M. Teixeira. 2005. Impaired inflammatory angiogenesis, but not leukocyte influx, in mice lacking TNFR1. Journal of Leukocyte Bioliogy 78(2): 352–358.

    Article  CAS  Google Scholar 

  • Basuroy, S., S. Bhattacharya, C.W. Leffler, and H. Parfenova. 2009. Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. American Journal of Physiology-Cell Physiology 296(3): C422–C432.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhonde, M.R., R.D. Gupte, S.D. Dadarkar, M.G. Jadhav, A.A. Tannu, P. Bhatt, D.R. Bhatia, et al. 2008. A novel mTOR inhibitor is efficacious in a murine model of colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology 295(6): G1237–G1245.

  • Carpenter, C.L., K.R. Auger, M. Chanudhuri, M. Yoakim, B. Schaffhausen, S. Shoelson, and L.C. Cantley. 1993. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. Journal of Biological Chemistry 268(13): 9478–9483.

    CAS  PubMed  Google Scholar 

  • Condliffe, A.M., K. Davidson, K.E. Anderson, C.D. Ellson, T. Crabbe, K. Okkenhaug, B. Vanhaesebroeck, et al. 2005. Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106(4): 1432–1440.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, N. 2004. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 9(Suppl 1): 2–10.

    Article  CAS  PubMed  Google Scholar 

  • Frey, R.S., X. Gao, K. Javaid, S.S. Siddiqui, A. Rahman, and A.B. Malik. 2006. Phosphatidylinositol 3-kinase gamma signaling through protein kinase Czeta induces NADPH oxidase-mediated oxidant generation and NF-kappaB activation in endothelial cells. Journal of Biological Chemistry 281(23): 16128–16138.

    Article  CAS  PubMed  Google Scholar 

  • Fukui, Y., and H. Hanafusa. 1989. Phosphatidylinositol kinase activity associates with viral p60src protein. Molecular and Cell Biology 9(4): 1651–1658.

    CAS  Google Scholar 

  • Gorlach, A., R.P. Brandes, K. Nguyen, M. Amidi, F. Dehghani, and R. Busse. 2000. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circulation Research 87(1): 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Graupera, M., J. Guillermet-Guibert, L.C. Foukas, L.K. Phng, R.J. Cain, A. Salpekar, W. Pearce, et al. 2008. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 453(7195): 662–666.

    Article  CAS  PubMed  Google Scholar 

  • Guillermet-Guibert, J., K. Bjorklof, A. Salpekar, C. Gonella, F. Ramadani, A. Bilancio, S. Meek, A.J. Smith, K. Okkenhaug, and B. Vanhaesebroeck. 2008. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proceeding of the National Academy of Sciences of the United States of America 105(24): 8292–8297.

    Article  CAS  Google Scholar 

  • Gustafson, K., M. Roman, and W. Fenical. 1989. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. Journal of the American Chemical Society 111(19): 7519–7524.

    Article  CAS  Google Scholar 

  • Heidemann, J., H. Ogawa, M.B. Dwinell, P. Rafiee, C. Maaser, H.R. Gockel, M.F. Otterson, et al. 2003. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. Journal of Biological Chemistry 278(10): 8508–8515.

  • Jiang, B.H., and L.Z. Liu. 2009. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Advances in Cancer Research 102: 19–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung, Y.D., S.A. Ahmad, W. Liu, N. Reinmuth, A. Parikh, O. Stoeltzing, F. Fan, and L.M. Ellis. 2002. The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Seminars in Cancer Biology 12(2): 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Kanoh, S., and B.K. Rubin. 2010. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clinical Microbiology Review 23(3): 590–615.

    Article  CAS  Google Scholar 

  • Kapeller, R., and L.C. Cantley. 1994. Phosphatidylinositol 3-kinase. BioEssays 16(8): 565–576.

    Article  CAS  PubMed  Google Scholar 

  • Karar, J., and A. Maity. 2011. PI3K/AKT/mTOR pathway in angiogenesis. Frontiers in Molecular Neuroscience 4: 51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keffer, J., L. Probert, H. Cazlaris, S. Georgopoulos, E. Kaslaris, D. Kioussis, and G. Kollias. 1991. Transgenic mice expressing human tumour necrosis factor: A predictive genetic model of arthritis. The EMBO Journal 10(13): 4025–4031.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerbel, R.S., and B.A. Kamen. 2004. The anti-angiogenic basis of metronomic chemotherapy. Nature Reviews Cancer 4(6): 423–436.

    Article  CAS  PubMed  Google Scholar 

  • Laing, K.J., and C.J. Secombes. 2004. Chemokines. Developmental and Comparative Immunology 28(5): 443–460.

    Article  CAS  PubMed  Google Scholar 

  • Li, A., S. Dubey, M.L. Varney, B.J. Dave, and R.K. Singh. 2003. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. The Journal of Immunology 170(6): 3369–3376.

  • Li, J.M., L.M. Fan, M.R. Christie, and A.M. Shah. 2005. Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Molecular and Cell Biology 25(6): 2320–2330.

    Article  CAS  Google Scholar 

  • Li, J.M., and A.M. Shah. 2004. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 287(5): R1014–R1030.

    Article  CAS  PubMed  Google Scholar 

  • Madrigal-Matute, J., C.E. Fernandez-Garcia, C. Gomez-Guerrero, O. Lopez-Franco, B. Munoz-Garcia, J. Egido, L.M. Blanco-Colio, and J.L. Martin-Ventura. 2012. HSP90 inhibition by 17-DMAG attenuates oxidative stress in experimental atherosclerosis. Cardiovascular Research 95(1): 116–123.

    Article  CAS  PubMed  Google Scholar 

  • Ono, M. 2008. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Science 99(8): 1501–1506.

    Article  CAS  PubMed  Google Scholar 

  • Park, S., S.C. Regmi, S.Y. Park, E.K. Lee, J.H. Chang, S.K. Ku, D.H. Kim, and J.A. Kim. 2014. Protective effect of 7-O-succinyl macrolactin A against intestinal inflammation is mediated through PI3-kinase/Akt/mTOR and NF-kappaB signaling pathways. European Journal of Pharmacology 735: 184–192.

    Article  CAS  PubMed  Google Scholar 

  • Pincheira, R., A.F. Castro, O.N. Ozes, P.S. Idumalla, and D.B. Donner. 2008. Type 1 TNF receptor forms a complex with and uses Jak2 and c-Src to selectively engage signaling pathways that regulate transcription factor activity. Journal of Immunology 181(2): 1288–1298.

    Article  CAS  Google Scholar 

  • Puri, K.D., T.A. Doggett, J. Douangpanya, Y. Hou, W.T. Tino, T. Wilson, T. Graf, et al. 2004. Mechanisms and implications of phosphoinositide 3-kinase delta in promoting neutrophil trafficking into inflamed tissue. Blood 103(9): 3448–3456.

    Article  CAS  PubMed  Google Scholar 

  • Puri, K.D., T.A. Doggett, C.Y. Huang, J. Douangpanya, J.S. Hayflick, M. Turner, J. Penninger, and T.G. Diacovo. 2005. The role of endothelial PI3Kgamma activity in neutrophil trafficking. Blood 106(1): 150–157.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ribatti, D., B. Nico, A.S. Belloni, A. Vacca, L. Roncali, and G.G. Nussdorfer. 2001. Angiogenic activity of leptin in the chick embryo chorioallantoic membrane is in part mediated by endogenous fibroblast growth factor-2. International Journal of Molecular Medicine 8(3): 265–268.

    CAS  PubMed  Google Scholar 

  • Rordorf-Nikolic, T., D.J. Van Horn, D. Chen, M.F. White, and J.M. Backer. 1995. Regulation of phosphatidylinositol 3′-kinase by tyrosyl phosphoproteins. Full activation requires occupancy of both SH2 domains in the 85-kDa regulatory subunit. Journal of Biological Chemistry 270(8): 3662–3666.

    Article  CAS  PubMed  Google Scholar 

  • Ruderman, N.B., R. Kapeller, M.F. White, and L.C. Cantley. 1990. Activation of phosphatidylinositol 3-kinase by insulin. Proceeding of the National Academy of Sciences of the United States of America 87(4): 1411–1415.

    Article  CAS  Google Scholar 

  • Sarma, V., F.W. Wolf, R.M. Marks, T.B. Shows, and V.M. Dixit. 1992. Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro. Journal of Immunology 148(10): 3302–3312.

    CAS  Google Scholar 

  • Sato, S., N. Fujita, and T. Tsuruo. 2000. Modulation of Akt kinase activity by binding to Hsp90. Proceeding of the National Academy of Sciences of the United States of America 97(20): 10832–10837.

    Article  CAS  Google Scholar 

  • Serban, D., J. Leng, and D. Cheresh. 2008. H-ras regulates angiogenesis and vascular permeability by activation of distinct downstream effectors. Circulation Research 102(11): 1350–1358.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiojima, I., and K. Walsh. 2002. Role of Akt signaling in vascular homeostasis and angiogenesis. Circulation Research 90(12): 1243–1250.

    Article  CAS  PubMed  Google Scholar 

  • Stommel, J.M., A.C. Kimmelman, H. Ying, R. Nabioullin, A.H. Ponugoti, R. Wiedemeyer, A.H. Stegh, et al. 2007. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318(5848): 287–290.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, S.M., and J.S. Brugge. 1997. Cellular functions regulated by Src family kinases. Annual Review of Cell and Developmental Biology 13: 513–609.

    Article  CAS  PubMed  Google Scholar 

  • Tojo, T., M. Ushio-Fukai, M. Yamaoka-Tojo, S. Ikeda, N. Patrushev, and R.W. Alexander. 2005. Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia. Circulation 111(18): 2347–2355.

    Article  CAS  PubMed  Google Scholar 

  • Tufan, A.C., and N.L. Satiroglu-Tufan. 2005. The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Current Cancer Drug Targets 5(4): 249–266.

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai, M., Y. Tang, T. Fukai, S.I. Dikalov, Y. Ma, M. Fujimoto, M.T. Quinn, P.J. Pagano, C. Johnson, and R.W. Alexander. 2002. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circulation Research 91(12): 1160–1167.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, J., and F. Balkwill. 2002. The role of cytokines in the epithelial cancer microenvironment. Seminars in Cancer Biology 12(2): 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Xie, K. 2001. Interleukin-8 and human cancer biology. Cytokine & Growth Factor Reviews 12(4): 375–391.

    Article  CAS  Google Scholar 

  • Yatsunami, J., Y. Fukuno, M. Nagata, M. Tominaga, S. Aoki, N. Tsuruta, M. Kawashima, S. Taniguchi, and S. Hayashi. 1999. Antiangiogenic and antitumor effects of 14-membered ring macrolides on mouse B16 melanoma cells. Clinical and Experimental Metastasis 17(4): 361–367.

    Article  CAS  PubMed  Google Scholar 

  • Yatsunami, J., N. Tsuruta, N. Hara, and S. Hayashi. 1998. Inhibition of tumor angiogenesis by roxithromycin, a 14-membered ring macrolide antibiotic. Cancer Letters 131(2): 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, S., M. Ono, T. Shono, H. Izumi, T. Ishibashi, H. Suzuki, and M. Kuwano. 1997. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Molecular and Cell Biology 17(7): 4015–4023.

    CAS  Google Scholar 

  • Yoshimoto, T., N. Gochou, N. Fukai, T. Sugiyama, M. Shichiri, and Y. Hirata. 2005. Adrenomedullin inhibits angiotensin II-induced oxidative stress and gene expression in rat endothelial cells. Hypertension Research 28(2): 165–172.

    Article  CAS  PubMed  Google Scholar 

  • Zachary, I., and G. Gliki. 2001. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasular Research 49(3): 568–581.

    Article  CAS  Google Scholar 

  • Zhang, R., Y. Xu, N. Ekman, Z. Wu, J. Wu, K. Alitalo, and W. Min. 2003. Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway. Journal of Biological Chemistry 278(51): 51267–51276.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, M., A. Wimmer, K. Trieu, R.G. Discipio, and I.U. Schraufstatter. 2004. Arrestin regulates MAPK activation and prevents NADPH oxidase-dependent death of cells expressing CXCR2. Journal of Biological Chemistry 279(47): 49259–49267.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2010 Yeungnam University Research Grant.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Ae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Regmi, S.C., Kim, M.Y. et al. Anti-angiogenic activity of macrolactin A and its succinyl derivative is mediated through inhibition of class I PI3K activity and its signaling. Arch. Pharm. Res. 38, 249–260 (2015). https://doi.org/10.1007/s12272-014-0535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0535-x

Keywords

Navigation