Skip to main content
Log in

Clinical implication of SGLT2 inhibitors in type 2 diabetes

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Treatment of type 2 diabetes mellitus (T2DM) continues to present challenges, with many patients failing to achieve glycemic targets. Despite the availability of many oral and injectable anti-diabetic agents, therapeutic efficacy is often offset by undesirable side effects such as hypoglycemia, weight gain and cardiovascular complications. Therefore, the search for new therapeutic agents with an improved benefit–risk profile continues. Recent research has focused on the kidney as a potential therapeutic target, especially because maximal renal glucose reabsorption is increased in T2DM. Under normal physiological conditions, nearly all filtered glucose is reabsorbed in the proximal tubule of the nephron via the sodium/glucose co-transporter 2 (SGLT2). SGLT2-inhibitors are a new class of oral anti-diabetes, which reduce hyperglycemia by increasing urinary glucose excretion independently of insulin secretion or action. Canagliflozin and dapagliflozin in US market, and ipragliflozin and luseogliflozin in Japan market are now available for glycemic control in type 2 diabetics. There are several phase III clinical ongoing trials involving this new class of medications. This review examines some of the key efficacy and safety data from clinical trials of the SGLT2 inhibitors approved, and their future perspectives in the treatment of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asano, T., T. Ogihara, H. Katagiri, H. Sakoda, H. Ono, M. Fujishiro, M. Anai, H. Kurihara, and Y. Uchijima. 2004. Glucose transporter and Na+/glucose cotransporter as molecular targets of anti-diabetic drugs. Current Medicinal Chemistry 11: 2717–2724.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, C.J., J.L. Gross, A. Pieters, A. Bastien, and J.F. List. 2010. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycemic control with metformin: A randomized, double-blind, placebo-controlled trial. Lancet 375: 2223–2233.

    Article  CAS  PubMed  Google Scholar 

  • Black, C., P. Donnelly, L. Mcintyre, P.L. Royle, J.P. Shepherd, and S. Thomas. 2007. Meglitinide analogues for type 2 diabetes mellitus. The Cochrane Database of Systematic Reviews 2: CD4654.

    Google Scholar 

  • Bode, B., K. Stenlöf, D. Sullivan, A. Fung, and K. Usiskin. 1995. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: A randomized trial. Hospital Practice 41: 72–84.

    Article  Google Scholar 

  • Bolinder, J., O. Ljunggren, J. Kullberg, L. Johansson, J. Wildding, A.M. Langkilde, J. Sugg, and S. Parikh. 2012. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. The Journal of Clinical Endoclinology & Metabolism 97: 1020–1031.

    Article  CAS  Google Scholar 

  • Burcelin, R., C. Knauf, and P.D. Cani. 2008. Pancreatic alphacell dysfunction in diabetes. Diabetes Metabolism 34: S49–S55.

    Article  CAS  PubMed  Google Scholar 

  • Cersosimo, E., P. Garlick, and J. Ferretti. 1999. Insulin regulation of renal glucose metabolism in humans. American Journal of Physiology 276: E78–E84.

    CAS  PubMed  Google Scholar 

  • Chao, E.C., and R.R. Henry. 2010. SGLT2 inhibition: A novel strategy for diabetes treatment. Nature Reviews Drug Discovery 9: 551–559.

    Article  CAS  PubMed  Google Scholar 

  • Copper, M.S., and P.M. Stewart. 2009. 11β-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus–pituitary–adrenal axis, metabolic syndrome, and inflammation. The Journal of Clinical Endocrinology and Metabolism 94: 4645–4654.

    Article  Google Scholar 

  • Croasdell, G. 2010. American Diabetes Association: 70th scientific sessions: Research on novel therapeutics: Part 1. The Investigational Dugs Journal 13: 595–597.

    Google Scholar 

  • Diabetes Prevention Program Research Group. 2002. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine 364: 393–403.

    Google Scholar 

  • Drucker, D.J., and M.A. Nauck. 2006. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368: 1696–1705.

    Article  CAS  PubMed  Google Scholar 

  • Dudash Jr, J., X. Zhang, R.E. Zeck, S.G. Johnson, G.G. Cox, B.R. Conway, P.J. Rybczynski, and K.T. Demarest. 2004. Glycosylated dihydrochalcones as potent and selective sodium glucose co-transporters 2 (SGLT2) inhibitors. Bioorganic & Medicinal Chemistry Letters 14: 5121–5125.

    Article  CAS  Google Scholar 

  • Edgerton, D.S., K.M. Johnson, and A.D. Cherrington. 2009. Current strategies for the inhibition of hepatic glucose production in type 2 diabetes. Frontiers in Bioscience 14: 1169–1181.

    Article  CAS  Google Scholar 

  • Ehrenkranz, R.R.L., N.G. Lewis, C.R. Kahn, and J. Roth. 2005. Phlorizin: A review. Diabetes Metabolism Research Reviews 21: 31–38.

    Article  CAS  PubMed  Google Scholar 

  • FDA. 2011. FDA briefing document. NDA 202293. Dapagliflozin tablets, 5 and 10 mg. Sponsor: Bristol-Myers Squibb. Advisory Committee Meeting.

  • Forst, T., R. Guthrie, R. Goldenberg, J. Yee, U. Vijapurkar, G. Meininger, and P. Stein. 2014. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes, Obesity & Metabolism 16: 467–477.

    Article  CAS  Google Scholar 

  • Fujimori, Y., K. Katsuno, I. Nakashima, Y. Ishikawa-Takemura, H. Fujikura, and M. Isaji. 2008. Remogliflozin etabonate, in a novel category of selective low-affinity/high-capacity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. The Journal of Pharmacology and Experimental Therapeutics 327: 268–276.

    Article  CAS  PubMed  Google Scholar 

  • Grempler, R., L. Thomas, M. Eckhardt, F. Himmelsbach, A. Sauer, D.E. Sharp, R.A. Bakker, M. Mark, T. Klein, and P. Eickelmann. 2012. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: Characterisation and comparison with other SGLT-2 inhibitors. Diabetes, Obesity & Metabolism 14: 83–90.

    Article  CAS  Google Scholar 

  • Gustavson, S.M., et al. 2004. Effects of hyperglycemia, glucagon, and epinephrine on renal glucose release in the conscious dog. Metabolism 53: 933–941.

    Article  CAS  PubMed  Google Scholar 

  • Han, G.C., S.K. Ko, J.H. Sung, and S.H. Chung. 2007. Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice. Journal of Agricultural and Food Chemistry 55: 10641–10648.

    Article  CAS  PubMed  Google Scholar 

  • Han, S., D.L. Hagan, J.R. Taylor, L. Xin, W. Meng, S.A. Biller, J.R. Wetterau, W.N. Washburn, and J.M. Whaley. 2008. Dapagliflozin: A selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57: 1723–1729.

    Article  CAS  PubMed  Google Scholar 

  • Hediger, M.A., and D.B. Rhoads. 1994. Molecular physiology of sodium–glucose cotransporters. Physiological Reviews 74: 993–1026.

    CAS  PubMed  Google Scholar 

  • Hediger, M.A., M.J. Coady, T.S. Ikeda, and E.M. Wright. 1987. Expression cloning and cDNA sequencing of the Na(+)/glucose co-transporter. Nature 330: 379–381.

    Article  CAS  PubMed  Google Scholar 

  • Hongu, M., N. Funami, Y. Takahashi, K. Saito, K. Arakawa, M. Matsumoto, H. Yamakita, and K. Tsujihara. 1998a. Na(+)–glucose cotransporter inhibitors as antidiabetic agents. III. Synthesis and pharmacological properties of 4′-dehydroxyphlorizin derivatives modified at the OH groups of the glucose moiety. Chemical & Pharmaceutical Bulletin (Tokyo) 46: 1545–1555.

    Article  CAS  Google Scholar 

  • Hongu, M., T. Tanaka, N. Funami, K. Saito, K. Arakawa, M. Matsumoto, and K. Tsujihara. 1998b. Na(+)–glucose cotransporter inhibitors as antidiabetic agents. II. Synthesis and structure-activity relationships of 4′-dehydroxyphlorizin derivatives. Chemical & Pharmaceutical Bulletin (Tokyo) 46: 22–33.

    Article  CAS  Google Scholar 

  • Hussey, E.K., R.L. Dobbins, R.R. Stoltz, N.L. Stockman, R.L. O’Connor-Semmes, A. Kapur, S.C. Murray, D. Layko, and D.J. Nunez. 2010. Multiple-dose pharmacokinetics and pharmacodynamics of sergliflozin etabonate, a novel inhibitor of glucose reabsorption, in healthy overweight and obese subjects: A randomized double-blind study. Journal of Clinical Pharmacology 50: 636–646.

    Article  CAS  PubMed  Google Scholar 

  • Kahn, S.E., R.L. Hull, and K.M. Ulzschneider. 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840–846.

    Article  CAS  PubMed  Google Scholar 

  • Khan, S.E., S.M. Haffner, M.A. Heise, S.E. Kahn, S.M. Haffner, M.A. Heise, W.H. Herman, R.R. Holman, N.P. Jones, B.G. Kravitz, J.M. Lachin, M.C. O’Neill, B. Zinman, and G. Viberti. 2006. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. The New England Journal of Medicine 355: 2427–2443.

    Article  Google Scholar 

  • Kim, S.J., H.Y. Quan, K.J. Kyong, D.Y. Kim, G.W. Kim, H.K. Jo, and S.H. Chung. 2014. Beneficial effect of betulinic acid on hyperglycemia via suppression of hepatic glucose production. Journal of Agricultural and Food Chemistry 62: 434–442.

    Article  CAS  Google Scholar 

  • Komoroski, B., N. Vachharajani, Y. Feng, L. Li, D. Kornhauser, and M. Pfister. 2009. Dapagliflozin: A novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clinical Pharmacology and Therapeutics 85: 513–519.

    Article  CAS  PubMed  Google Scholar 

  • Markham, A., and S. Elkinson. 2014. Luseogliflozin: First global approval. Drugs 74: 945–950.

  • Marsenic, O. 2009. Glucose control by the kidney: An emerging target in diabetes. American Journal of Kidney Disease 53: 875–883.

    Article  CAS  Google Scholar 

  • Matsuda, M., R.A. Defronzo, L. Glass, A. Consoil, M. Giordano, P. Bressler, and S. Delprato. 2002. Glucagon dose-response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals. Metabolism 51: 1111–1119.

    Article  CAS  PubMed  Google Scholar 

  • Merovci, A., C. Solis-Herrera, G. Daniele, R. Eldor, T.V. Fiorentino, D. Tripathy, J. Xiong, Z. Perez, L. Norton, M.A. Abdul-Ghani, and R.A. DeFronzo. 2014. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. The Journal of Clinical Investigation 124: 509–514.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miao, Z., G. Nucci, N. Amin, R. Sharma, V. Mascitti, M. Tugnait, A.D. Vaz, E. Callegari, and A.S. Kalgutkar. 2013. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metabolism and Disposition 41: 445–456.

    Article  CAS  PubMed  Google Scholar 

  • Mulder, H., C. Nagorny, V. Lyssenko, and L. Groop. 2009. Melatonin receptors in pancreatic islets: Good morning to a novel type 2 diabetes gene. Diabetologia 52: 1240–1249.

    Article  CAS  PubMed  Google Scholar 

  • Nagata, T., M. Fukazawa, K. Honda, T. Yata, M. Kawai, M. Yamane, N. Murao, K. Yamaguchi, M. Kato, T. Mitsui, Y. Suzuki, S. Ikeda, and Y. Kawabe. 2012. Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo- or euglycemic conditions in rats. AJP: Endocrinology and Metabolism 304: E414–E423.

    Google Scholar 

  • Neumiller, J.J., J.R. White, and R.K. Campbell. 2010. Sodium-glucose co-transporter inhibitors: Progress and therapeutic potential in type 2 diabetes mellitus. Drugs 70: 377–385.

    Article  CAS  PubMed  Google Scholar 

  • Ohtake, Y., T. Sato, T. Kobayashi, M. Nishimoto, N. Taka, K. Takano, K. Yamamoto, M. Ohmori, M. Yamaguchi, K. Takami, S.Y. Yeu, K.H. Ahn, H. Matsuoka, K. Morikawa, M. Suzuki, H. Hagita, K. Ozawa, K. Yamaguchi, K. Kato, and S. Ikeda. 2012. Discovery of tofogliflozin, a novel c-arylglucoside with ano-spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (sglt2) inhibitor for the treatment of type 2 diabetes. Journal of Medicinal Chemistry 55: 7828–7840.

    Article  CAS  PubMed  Google Scholar 

  • Poole, R.M., and R.T. Dungo. 2014. Ipragliflozin: First global approval. Drugs 74: 611–617.

    Article  CAS  PubMed  Google Scholar 

  • Rahmoune, H., P.W. Thompson, J.M. Ward, C.D. Smith, G. Hong, and J. Brown. 2005. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54: 3427–3434.

    Article  CAS  PubMed  Google Scholar 

  • Reaven, G.M. 1988. Role of insulin resistance in human disease. Diabetes 37: 1595–1607.

    Article  CAS  PubMed  Google Scholar 

  • Sha, S., D. Devineni, A. Ghosh, D. Polidori, S. Chien, D. Wexler, K. Shalayda, K. Demarest, and P. Rothenberg. 2011. Canagliflozin: A novel inhibitor of sodium glucose co-transporter 2, dose dependently reduces calculated renal threshold for glucose excretion and increases urinary glucose excretion in healthy subjects. Diabetes, Obesity & Metabolism 13: 669–672.

    Article  CAS  Google Scholar 

  • Stenlöf, K., W.T. Cefalu, K.A. Kim, M. Alba, K. Usiskin, C. Tong, W. Canovatchel, and G. Meininger. 2013. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes, Obesity & Metabolism 15: 372–382.

    Article  Google Scholar 

  • Stumvoll, M., B.J. Goldstein, and T.W. van Haeften. 2005. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 365: 1333–1346.

    Article  CAS  PubMed  Google Scholar 

  • Tsujihara, K., M. Hongu, K. Saito, M. Inamasu, K. Arakawa, A. Oku, and M. Matsumoto. 1996. Na(+)–glucose cotransporter inhibitors as antidiabetics. I. Synthesis and pharmacological properties of 4′-dehydroxyphlorizin derivatives based on a new concept. Chemical & Pharmaceutical Bulletin (Tokyo) 44: 1174–1180.

    Article  CAS  Google Scholar 

  • Uldry, M., and B. Thorens. 2004. The SLC2 family of facilitated hexose and polyol transporters. Pflügers Archiv 447: 480–489.

    Article  CAS  PubMed  Google Scholar 

  • Wilding, J.P., P. Norwood, C. T’joen, A. Bastien, J.F. List, and F.T. Fiedorek. 2009. A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: Applicability of a novel insulin-independent treatment. Diabetes Care 32: 1656–1662.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wright, E.M. 2001. Renal Na(+)–glucose cotransporters. American Journal of Physiology: Renal Physiology 280: F10–F18.

    CAS  PubMed  Google Scholar 

  • Wright, E.M., D.D. Loo, and B.A. Hirayama. 2011. Biology of human sodium glucose transporters. Physiological Reviews 91: 733–794.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, H.D., and S.H. Chung. 2010. Protective effects of fermented ginseng on streptozotocin-induced pancreatic β-cell damage through inhibition of NF-κB. International Journal of Molecular Medicine 25: 53–58.

    PubMed  Google Scholar 

  • Zambrowicz, B., J. Freiman, P.M. Brown, K.S. Frazier, A. Turnage, J. Bronner, D. Ruff, M. Shadoan, P. Banks, F. Mseeh, D.B. Rawlins, N.C. Goodwin, R. Mabon, B.A. Harrison, A. Wilson, A. Sands, and D.R. Powell. 2012. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clinical Pharmacology and Therapeutics 92: 158–169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hyun Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G.W., Chung, S.H. Clinical implication of SGLT2 inhibitors in type 2 diabetes. Arch. Pharm. Res. 37, 957–966 (2014). https://doi.org/10.1007/s12272-014-0419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0419-0

Keywords

Navigation