Skip to main content
Log in

Evaluation of multimeric siRNA conjugates for efficient protamine-based delivery into breast cancer cells

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Despite the preferable properties of well-defined cationic peptides for small interfering RNA (siRNA) delivery, their application as siRNA carriers remains limited due to their poor binding affinity with short-chain RNAs. In this study, we investigated the feasibility of a novel strategy for circumventing this limitation, by assessing the utility of multimeric conjugates of siRNA for improving the binding affinity of siRNAs with cationic peptides and the extent of intracellular delivery. Protamine, a natural and arginine-rich peptide, was used to produce stably condensed polyelectrolyte complexes (PECs) with multimeric siRNAs (multi-siRNA) with a size of 120 nm while conventional siRNA/protamine particles are over 500 nm. The formulated multi-siRNA/protamine PECs showed greatly enhanced stability, intracellular uptake, and biocompatibility compared to conventional, monomeric (mono)-siRNA/protamine particles. With the addition of chloroquine, multi-siRNA/protamine PECs successfully inhibited target gene expression in MDA-MB-435 cells, a breast cancer cell line, even in the presence of serum protein. This study demonstrates that multi-siRNA conjugates greatly facilitate the formulation of nano-sized protamine-based carriers and significantly improve intracellular delivery in vitro compared to common siRNAs, and therefore may provide a platform for the design of peptide-based siRNA delivery systems for in vivo applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brewer, L.R., M. Corzett, and R. Balhorn. 1999. Protamine-induced condensation and decondensation of the same DNA molecule. Science 286: 120–123.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y.S., et al. 2010. The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 31: 1429–1443.

    Article  CAS  PubMed  Google Scholar 

  • Decuzzi, P., et al. 2009. Intravascular delivery of particulate systems: does geometry really matter? Pharmaceutical Research 26: 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, D., et al. 2004. Poly(diallyldimethylammonium chlorides) and their N-methyl-N-vinylacetamide copolymer-based DNA-polyplexes: role of molecular weight and charge density in complex formation, stability, and in vitro activity. International Journal of Pharmaceutics 280: 253–269.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, D., et al. 2003. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24: 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  • Heuer, D.M., S. Saha, and L.A. Archer. 2003. Topological effects on the electrophoretic mobility of rigid rodlike DNA in polyacrylamide gels. Biopolymers 70: 471–481.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., et al. 2013. Curb challenges of the “Trojan Horse” approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Advanced drug delivery reviews 65: 1299–1315.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, W.J., and S.W. Kim. 2009. Efficient siRNA delivery with non-viral polymeric vehicles. Pharmaceutical Research 26: 657–666.

    Article  CAS  PubMed  Google Scholar 

  • Kiselev, A., et al. 2013. Characterization of reducible peptide oligomers as carriers for gene delivery. International Journal of Pharmaceutics 441: 736–747.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P., et al. 2008. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134: 577–586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kundu, A.K., et al. 2012. Stability of lyophilized siRNA nanosome formulations. International Journal of Pharmaceutics 423: 525–534.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, S.H., et al. 2012. Small-interfering RNA (siRNA)-based functional micro- and nanostructures for efficient and selective gene silencing. Accounts of Chemical Research 45: 1014–1025.

    Article  CAS  PubMed  Google Scholar 

  • Makris, M., R.E. Hough, and S. Kitchen. 2000. Poor reversal of low molecular weight heparin by protamine. British Journal of Haematology 108: 884–885.

    Article  CAS  PubMed  Google Scholar 

  • Meade, B.R., and S.F. Dowdy. 2007. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Advanced Drug Delivery Reviews 59: 134–140.

    Article  CAS  PubMed  Google Scholar 

  • Mok, H., et al. 2010. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nature Materials 9: 272–278.

    CAS  PubMed  Google Scholar 

  • Mok, H., and T.G. Park. 2008. Self-crosslinked and reducible fusogenic peptides for intracellular delivery of siRNA. Biopolymers 89: 881–888.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, J., and F.C. Szoka. 2012. Nucleic acid delivery: the missing pieces of the puzzle? Accounts of Chemical Research 45: 1153–1162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pernodet, N., M. Maaloum, and B. Tinland. 1997. Pore size of agarose gels by atomic force microscopy. Electrophoresis 18: 55–58.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, F., R. Weissleder, and L. Josephson. 2005. Protamine as an efficient membrane-translocating peptide. Bioconjugate Chemistry 16: 1240–1245.

    Article  CAS  PubMed  Google Scholar 

  • Scholz, C., and E. Wagner. 2012. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. Journal of Controlled Release 161: 554–565.

    Article  CAS  PubMed  Google Scholar 

  • Tseng, Y.C., S. Mozumdar, and L. Huang. 2009. Lipid-based systemic delivery of siRNA. Advanced Drug Delivery Reviews 61: 721–731.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Won, Y.W., et al. 2011. Poly(oligo-d-arginine) With Internal Disulfide Linkages as a Cytoplasm-sensitive Carrier for siRNA Delivery. Molecular Therapy 19: 372–380.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wyman, T.B., et al. 1997. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 36: 3008–3017.

    Article  CAS  PubMed  Google Scholar 

  • Yewale, C., et al. 2013. Proteins: emerging carrier for delivery of cancer therapeutics. Expert Opinion on Drug Delivery 10: 1429–1448.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National R&D Program for Cancer Control, Ministry for Health and Welfare, Republic of Korea (1220050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyejung Mok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, H., Mok, H. Evaluation of multimeric siRNA conjugates for efficient protamine-based delivery into breast cancer cells. Arch. Pharm. Res. 38, 129–136 (2015). https://doi.org/10.1007/s12272-014-0359-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0359-8

Keywords

Navigation