Skip to main content
Log in

Protocatechuic acid extends lifespan and increases stress resistance in Caenorhabditis elegans

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Veronica peregrina has a wide range of types of constituents with various pharmacological properties. Here in this study, we isolated protocatechuic acid (PCA) from V. peregrina and examined PCAs effects on the lifespan and stress tolerance using Caenorhabditis elegans model system. We found that lifespan of wild-type worms was significantly lengthened in the presence of PCA in a dose dependent manner. PCA also elevated tolerance of worms against osmotic, heat shock, and oxidative stress. We also demonstrated antioxidant capacity of PCA by checking intracellular reactive oxygen species level and antioxidant enzyme activities such as catalase and superoxide dismutase. We further investigated several factors including pharyngeal pumping rate and progeny production that might influence prolonged lifespan and enhanced stress tolerance by PCA. Interestingly, both factors were significantly reduced after PCA exposure, indicating PCA exerts longevity activity by shifting food intake and reproduction at least in part. In addition, PCA-treated aged worms showed increased body movement compared to untreated controls suggesting PCA could enhance healthspan as well as lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adachi, H., and N. Ishii. 2000. Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. Journals of Gerontology A, Biological Sciences and Medical Sciences 55: B280–B285.

    Article  CAS  Google Scholar 

  • Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105: 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Ahn, D.R., S.I. Lee, and J.H. Yang. 2011. Superoxide radical scavengers from the whole plant of Veronica peregrina. Natural Product Sciences 17: 142–146.

    CAS  Google Scholar 

  • Aires, D.J., G. Rockwell, T. Wang, J. Frontera, J. Wick, W. Wang, M. Tonkovic-Capin, J. Lu, E. Lezi, H. Zhu, and R.H. Swerdlow. 2012. Potentiation of dietary restriction-induced lifespan extension by polyphenols. Biochimica et Biophysica Acta 1822: 522–526.

    Google Scholar 

  • An, L.J., S. Guan, G.F. Shi, Y.M. Bao, Y.L. Duan, and B. Jiang. 2006. Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food and Chemical Toxicology 44: 436–443.

    Article  CAS  PubMed  Google Scholar 

  • Antebi, A. 2007. Ageing: When less is more. Nature 447: 536–537.

    Article  CAS  PubMed  Google Scholar 

  • Arantes-Oliveira, N., J. Apfeld, A. Dillin, and C. Kenyon. 2002. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295: 502–505.

    Article  CAS  PubMed  Google Scholar 

  • Bokov, A., A. Chaudhuri, and A. Richardson. 2004. The role of oxidative damage and stress in aging. Mechanisms of Ageing and Development 125: 811–826.

    Article  CAS  PubMed  Google Scholar 

  • Bordone, L., and L. Guarente. 2005. Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nature Reviews Molecular Cell Biology 6: 298–305.

    Article  CAS  PubMed  Google Scholar 

  • Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

    CAS  PubMed  Google Scholar 

  • Brown, M.K., J.L. Evans, and Y. Luo. 2006. Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacology, Biochemistry and Behavior 85: 620–628.

    Article  CAS  PubMed  Google Scholar 

  • Canuelo, A., B. Gilbert-Lopez, P. Pacheco-Linan, E. Martinez-Lara, E. Siles, and A. Miranda-Vizuete. 2012. Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans. Mechanisms of Ageing and Development 133: 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Finkel, T., and N.J. Holbrook. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Glenn, C.F., D.K. Chow, L. David, C.A. Cooke, M.S. Gami, W.B. Iser, K.B. Hanselman, I.G. Goldberg, and C.A. Wolkow. 2004. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty. Journals of Gerontology A, Biological Sciences and Medical Sciences 59: 1251–1260.

    Article  Google Scholar 

  • Golden, T.R., and S. Melov. 2007. Gene expression changes associated with aging in C. elegans. WormBook 12: 1–12.

    Google Scholar 

  • Guarente, L., and C. Kenyon. 2000. Genetic pathways that regulate ageing in model organisms. Nature 408: 255–262.

    Article  CAS  PubMed  Google Scholar 

  • Harini, R., and K.V. Pugalendi. 2010. Antihyperglycemic effect of protocatechuic acid on streptozotocin-diabetic rats. Journal of Basic and Clinical Physiology and Pharmacology 21: 79–91.

    Article  PubMed  Google Scholar 

  • Harman, D. 1956. Aging: A theory based on free radical and radiation chemistry. Journals of Gerontology 11: 298–300.

    Article  CAS  PubMed  Google Scholar 

  • Harrington, L.A., and C.B. Harley. 1988. Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mechanisms of Ageing and Development 43: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Herndon, L.A., P.J. Schmeissner, J.M. Dudaronek, P.A. Brown, K.M. Listner, Y. Sakano, M.C. Paupard, D.H. Hall, and M. Driscoll. 2002. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419: 808–814.

    Article  CAS  PubMed  Google Scholar 

  • Horikawa, M., and K. Sakamoto. 2009. Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans. Biochemical and Biophysical Research Communications 390: 1402–1407.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, N., N. Senoo-Matsuda, K. Miyake, K. Yasuda, T. Ishii, P.S. Hartman, and S. Furukawa. 2004. Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress. Mechanisms of Ageing and Development 125: 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, H. 2012. Anti-inflammatory activity of Veronica peregrina. Natural Product Sciences 18: 141–146.

    CAS  Google Scholar 

  • Kim, K., O.N. Bae, K.M. Lim, J.Y. Noh, S. Kang, K.Y. Chung, and J.H. Chung. 2012. Novel antiplatelet activity of protocatechuic acid through the inhibition of high shear stress-induced platelet aggregation. Journal of Pharmacology and Experimental Therapeutics 343: 704–711.

    Article  CAS  PubMed  Google Scholar 

  • Kwak, J.H., H.J. Kim, K.H. Lee, S.C. Kang, and O.P. Zee. 2009. Antioxidative iridoid glycosides and phenolic compounds from Veronica peregrina. Archives of Pharmacal Research 32: 207–213.

    Article  CAS  PubMed  Google Scholar 

  • Lakowski, B., and S. Hekimi. 1998. The genetics of caloric restriction in Caenorhabditis elegans. Proceedings of the National Academy Science USA 95: 13091–13096.

    Article  CAS  Google Scholar 

  • Larsen, P.L. 1993. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proceedings of the National Academy Science USA 90: 8905–8909.

    Article  CAS  Google Scholar 

  • Lee, E.Y., Y.H. Shim, D.J. Chitwood, S.B. Hwang, J. Lee, and Y.K. Paik. 2005. Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochemical and Biophysical Research Communications 328: 929–936.

    Article  CAS  PubMed  Google Scholar 

  • Lin, H.H., J.H. Chen, F.P. Chou, and C.J. Wang. 2011. Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-kappaB pathway and MMP-2 production by targeting RhoB activation. British Journal of Pharmacology 162: 237–254.

    Article  CAS  PubMed  Google Scholar 

  • Lithgow, G.J., T.M. White, S. Melov, and T.E. Johnson. 1995. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proceedings of the National Academy Science USA 92: 7540–7544.

    Article  CAS  Google Scholar 

  • Masella, R., C. Santangelo, M. D’Archivio, G. Li Volti, C. Giovannini, and F. Galvano. 2012. Protocatechuic acid and human disease prevention: Biological activities and molecular mechanisms. Current Medicinal Chemistry 19: 2901–2917.

    Article  CAS  PubMed  Google Scholar 

  • Mekheimer, R.A., A.A. Sayed, and E.A. Ahmed. 2012. Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. Journal of Medicinal Chemistry 55: 4169–4177.

    Article  CAS  PubMed  Google Scholar 

  • Munoz, M.J., and D.L. Riddle. 2003. Positive selection of Caenorhabditis elegans mutants with increased stress resistance and longevity. Genetics 163: 171–180.

    CAS  PubMed  Google Scholar 

  • Oliveira, B.F., J.A. Nogueira-Machado, and M.M. Chaves. 2010. The role of oxidative stress in the aging process. ScientificWorldJournal 10: 1121–1128.

    Article  CAS  PubMed  Google Scholar 

  • Peng, C., H.Y. Chan, Y. Huang, H. Yu, and Z.Y. Chen. 2011. Apple polyphenols extend the mean lifespan of Drosophila melanogaster. Journal of Agriculture and Food Chemistry 59: 2097–2106.

    Article  CAS  Google Scholar 

  • Pietsch, K., N. Saul, S. Chakrabarti, S.R. Sturzenbaum, R. Menzel, and C.E. Steinberg. 2011. Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 12: 329–347.

    Article  CAS  PubMed  Google Scholar 

  • Queen, B.L., and T.O. Tollefsbol. 2010. Polyphenols and aging. Current Aging Science 3: 34–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sroka, Z., and W. Cisowski. 2003. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food and Chemical Toxicology 41: 753–758.

    Article  CAS  PubMed  Google Scholar 

  • Stojkovic, D.S., J. Zivkovic, M. Sokovic, J. Glamoclija, I.C. Ferreira, T. Jankovic, and Z. Maksimovic. 2013. Antibacterial activity of Veronica montana L. extract and of protocatechuic acid incorporated in a food system. Food and Chemical Toxicology 55: 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Tazearslan, C., S. Ayyadevara, P. Bharill, and R.J. Shmookler Reis. 2009. Positive feedback between transcriptional and kinase suppression in nematodes with extraordinary longevity and stress resistance. PLoS Genetics 5: e1000452.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsai, S.J., and M.C. Yin. 2012. Anti-glycative and anti-inflammatory effects of protocatechuic acid in brain of mice treated by d-galactose. Food and Chemical Toxicology 50: 3198–3205.

    Article  CAS  PubMed  Google Scholar 

  • Walker, G., K. Houthoofd, J.R. Vanfleteren, and D. Gems. 2005. Dietary restriction in C. elegans: From rate-of-living effects to nutrient sensing pathways. Mechanisms of Ageing and Development 126: 929–937.

    Article  CAS  PubMed  Google Scholar 

  • Wei, M., X. Chu, M. Guan, X. Yang, X. Xie, F. Liu, C. Chen, and X. Deng. 2013. Protocatechuic acid suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model. International Immunopharmacology 15: 780–788.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Z., J.V. Smith, V. Paramasivam, P. Butko, I. Khan, J.R. Cypser, and Y. Luo. 2002. Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cellular and molecular biology (Noisy-le-grand) 48: 725–731.

    CAS  Google Scholar 

  • Zhang, X., G.F. Shi, X.Z. Liu, L.J. An, and S. Guan. 2011. Anti-ageing effects of protocatechuic acid from Alpinia on spleen and liver antioxidative system of senescent mice. Cell Biochemistry and Function 29: 342–347.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Following are results of a study on the “Leades INdustry-university Cooperation of Woosuk University” Project, supported by the Ministry of Education, Science & Technology (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Seok Cha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.S., Seo, H.W., Lee, MH. et al. Protocatechuic acid extends lifespan and increases stress resistance in Caenorhabditis elegans . Arch. Pharm. Res. 37, 245–252 (2014). https://doi.org/10.1007/s12272-013-0183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0183-6

Keywords

Navigation