Skip to main content
Log in

Deep Phenotyping of Systemic Arterial Hemodynamics in HFpEF (Part 1): Physiologic and Technical Considerations

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

An Erratum to this article was published on 21 April 2017

This article has been updated

Abstract

A better understanding of the pathophysiology of heart failure with a preserved left ventricular ejection fraction (HFpEF) is important. Detailed phenotyping of pulsatile hemodynamics has provided important insights into the pathophysiology of left ventricular remodeling and fibrosis, diastolic dysfunction, microvascular disease, and impaired oxygen delivery to peripheral skeletal muscle, all of which contribute to exercise intolerance, the cardinal feature of HFpEF. Furthermore, arterial pulsatile hemodynamic mechanisms likely contribute to the frequent presence of comorbidities, such as renal failure and dementia, in this population. Our therapeutic approach to HFpEF can be enhanced by clinical phenotyping tools with the potential to “segment” this population into relevant pathophysiologic categories or to identify individuals exhibiting prominent specific abnormalities that can be targeted by pharmacologic interventions. This review describes relevant technical and physiologic aspects regarding the deep phenotyping of arterial hemodynamics in HFpEF. In an accompanying review, the potential of this approach to enhance our clinical and therapeutic approach to HFpEF is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 21 April 2017

    An erratum to this article has been published.

References

  1. Lam, C. S., Donal, E., Kraigher-Krainer, E., & Vasan, R. S. (2011). Epidemiology and clinical course of heart failure with preserved ejection fraction. European Journal of Heart Failure, 13, 18–28.

    Article  PubMed  Google Scholar 

  2. Lloyd-Jones, D. M., Hong, Y., Labarthe, D., Mozaffarian, D., Appel, L. J., Van Horn, L., Greenlund, K., Daniels, S., Nichol, G., Tomaselli, G. F., Arnett, D. K., Fonarow, G. C., Ho, P. M., Lauer, M. S., Masoudi, F. A., Robertson, R. M., Roger, V., Schwamm, L. H., Sorlie, P., Yancy, C. W., & Rosamond, W. D. (2010). Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic impact goal through 2020 and beyond. Circulation, 121, 586–613.

    Article  PubMed  Google Scholar 

  3. Cleland, J. G., Tendera, M., Adamus, J., Freemantle, N., Polonski, L., & Taylor, J. (2006). The perindopril in elderly people with chronic heart failure (PEP-CHF) study. European Heart Journal, 27, 2338–2345.

    Article  CAS  PubMed  Google Scholar 

  4. Massie, B. M., Carson, P. E., McMurray, J. J., Komajda, M., McKelvie, R., Zile, M. R., Anderson, S., Donovan, M., Iverson, E., Staiger, C., & Ptaszynska, A. (2008). Irbesartan in patients with heart failure and preserved ejection fraction. The New England Journal of Medicine, 359, 2456–2467.

    Article  CAS  PubMed  Google Scholar 

  5. Yusuf, S., Pfeffer, M. A., Swedberg, K., Granger, C. B., Held, P., McMurray, J. J., Michelson, E. L., Olofsson, B., & Ostergren, J. (2003). Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the charm-preserved trial. Lancet, 362, 777–781.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, D. S., Gona, P., Vasan, R. S., Larson, M. G., Benjamin, E. J., Wang, T. J., Tu, J. V., & Levy, D. (2009). Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the Framingham heart study of the national heart, lung, and blood institute. Circulation, 119, 3070–3077.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoekstra, T., Lesman-Leegte, I., van Veldhuisen, D. J., Sanderman, R., & Jaarsma, T. (2011). Quality of life is impaired similarly in heart failure patients with preserved and reduced ejection fraction. European Journal of Heart Failure, 13, 1013–1018.

    Article  PubMed  Google Scholar 

  8. Lewis, E. F., Lamas, G. A., O’Meara, E., Granger, C. B., Dunlap, M. E., McKelvie, R. S., Probstfield, J. L., Young, J. B., Michelson, E. L., Halling, K., Carlsson, J., Olofsson, B., McMurray, J. J., Yusuf, S., Swedberg, K., & Pfeffer, M. A. (2007). Characterization of health-related quality of life in heart failure patients with preserved versus low ejection fraction in charm. European Journal of Heart Failure, 9, 83–91.

    Article  PubMed  Google Scholar 

  9. Vonk Noordegraaf, A., Westerhof, B. E., & Westerhof, N. (2017). The relationship between the right ventricle and its load in pulmonary hypertension. Journal of the American College of Cardiology, 69, 236–243.

    Article  PubMed  Google Scholar 

  10. Nichols WW ORM, Vlachopoulos C (2011). McDonald’s blood flow in arteries: theoretical, experimental and clinical principles, 6th edition. Hodder Arnold.

  11. Chirinos JA (2013). Ventricular-arterial coupling: invasive and non-invasive assessment. Artery Res, 7.

  12. Chen, C. H., Fetics, B., Nevo, E., Rochitte, C. E., Chiou, K. R., Ding, P. A., Kawaguchi, M., & Kass, D. A. (2001). Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. Journal of the American College of Cardiology, 38, 2028–2034.

    Article  CAS  PubMed  Google Scholar 

  13. Senzaki, H., Chen, C. H., & Kass, D. A. (1996). Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation, 94, 2497–2506.

    Article  CAS  PubMed  Google Scholar 

  14. Suga, H. (1971). Theoretical analysis of a left-ventricular pumping model based on the systolic time-varying pressure-volume ratio. IEEE transactions on bio-medical engineering., 18, 47–55.

    Article  CAS  PubMed  Google Scholar 

  15. Suga, H. (1979). Total mechanical energy of a ventricle model and cardiac oxygen consumption. The American Journal of Physiology, 236, H498–H505.

    CAS  PubMed  Google Scholar 

  16. Khalafbeigui, F., Suga, H., & Sagawa, K. (1979). Left ventricular systolic pressure-volume area correlates with oxygen consumption. The American Journal of Physiology, 237, H566–H569.

    CAS  PubMed  Google Scholar 

  17. Suga, H. (1990). Ventricular energetics. Physiological Reviews, 70, 247–277.

    CAS  PubMed  Google Scholar 

  18. Takaoka, H., Takeuchi, M., Odake, M., & Yokoyama, M. (1992). Assessment of myocardial oxygen consumption (Vo2) and systolic pressure-volume area (PVA) in human hearts. European Heart Journal, 13(Suppl E), 85–90.

    Article  PubMed  Google Scholar 

  19. Sunagawa, K., Maughan, W. L., Burkhoff, D., & Sagawa, K. (1983). Left ventricular interaction with arterial load studied in isolated canine ventricle. The American Journal of Physiology, 245, H773–H780.

    CAS  PubMed  Google Scholar 

  20. Sunagawa, K., Maughan, W. L., Friesinger, G., Guzman, P., Chang, M. S., & Sagawa, K. (1982). Effects of coronary arterial pressure on left ventricular end-systolic pressure-volume relation of isolated canine heart. Circulation Research, 50, 727–734.

    Article  CAS  PubMed  Google Scholar 

  21. Sunagawa, K., Sagawa, K., & Maughan, W. L. (1984). Ventricular interaction with the loading system. Annals of Biomedical Engineering, 12, 163–189.

    Article  CAS  PubMed  Google Scholar 

  22. Kass, D. A. (2005). Ventricular arterial stiffening: integrating the pathophysiology. Hypertension, 46, 185–193.

    Article  CAS  PubMed  Google Scholar 

  23. Chantler, P. D., Lakatta, E. G., & Najjar, S. S. (2008). Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. Journal of Applied Physiology, 105, 1342–1351.

    Article  PubMed  PubMed Central  Google Scholar 

  24. De Tombe, P. P., Jones, S., Burkhoff, D., Hunter, W. C., & Kass, D. A. (1993). Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. The American Journal of Physiology, 264, H1817–H1824.

    CAS  PubMed  Google Scholar 

  25. Kawaguchi, M., Hay, I., Fetics, B., & Kass, D. A. (2003). Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation, 107, 714–720.

    Article  PubMed  Google Scholar 

  26. Lam, C. S., Roger, V. L., Rodeheffer, R. J., Bursi, F., Borlaug, B. A., Ommen, S. R., Kass, D. A., & Redfield, M. M. (2007). Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation, 115, 1982–1990.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Melenovsky, V., Borlaug, B. A., Rosen, B., Hay, I., Ferruci, L., Morell, C. H., Lakatta, E. G., Najjar, S. S., & Kass, D. A. (2007). Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. Journal of the American College of Cardiology, 49, 198–207.

    Article  PubMed  Google Scholar 

  28. Ooi, H., Chung, W., & Biolo, A. (2008). Arterial stiffness and vascular load in heart failure. Congestive heart failure., 14, 31–36.

    Article  PubMed  Google Scholar 

  29. Nichols WW ORM, Vlachopolous C (2011). McDonald’s blood flow in arteries. theoretical, experimental and clinical principles. Hodder Arnold.

  30. Fukuta, H., Ohte, N., Wakami, K., Asada, K., Goto, T., Mukai, S., Tani, T., & Kimura, G. (2010). Impact of arterial load on left ventricular diastolic function in patients undergoing cardiac catheterization for coronary artery disease. Circulation Journal, 74, 1900–1905.

    Article  PubMed  Google Scholar 

  31. Weber, T., O’Rourke, M. F., Ammer, M., Kvas, E., Punzengruber, C., & Eber, B. (2008). Arterial stiffness and arterial wave reflections are associated with systolic and diastolic function in patients with normal ejection fraction. American Journal of Hypertension, 21, 1194–1202.

    Article  PubMed  Google Scholar 

  32. Kobayashi, S., Yano, M., Kohno, M., Obayashi, M., Hisamatsu, Y., Ryoke, T., Ohkusa, T., Yamakawa, K., & Matsuzaki, M. (1996). Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation, 94, 3362–3368.

    Article  CAS  PubMed  Google Scholar 

  33. Hashimoto, J., Westerhof, B. E., Westerhof, N., Imai, Y., & O’Rourke, M. F. (2008). Different role of wave reflection magnitude and timing on left ventricular mass reduction during antihypertensive treatment. Journal of Hypertension, 26, 1017–1024.

    Article  CAS  PubMed  Google Scholar 

  34. Gillebert, T. C., & Lew, W. Y. (1991). Influence of systolic pressure profile on rate of left ventricular pressure fall. The American Journal of Physiology, 261, H805–H813.

    CAS  PubMed  Google Scholar 

  35. Chirinos, J. A., Segers, P., Rietzschel, E. R., De Buyzere, M. L., Raja, M. W., Claessens, T., De Bacquer, D., St John Sutton, M., Gillebert, T. C., & Asklepios, I. (2013). Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the Asklepios study. Hypertension, 61, 296–303.

    Article  CAS  PubMed  Google Scholar 

  36. Quail MA, Short R, Pandya B, Steeden JA, Khushnood A, Taylor AM, Segers P, Muthurangu V (2017). Abnormal wave reflections and left ventricular hypertrophy late after coarctation of the aorta repair. Hypertension.

  37. Maughan, W. L., Sunagawa, K., Burkhoff, D., & Sagawa, K. (1984). Effect of arterial impedance changes on the end-systolic pressure-volume relation. Circulation Research, 54, 595–602.

    Article  CAS  PubMed  Google Scholar 

  38. Segers, P., Stergiopulos, N., & Westerhof, N. (2002). Relation of effective arterial elastance to arterial system properties. American Journal of Physiology. Heart and Circulatory Physiology, 282, H1041–H1046.

    Article  CAS  PubMed  Google Scholar 

  39. Chirinos, J. A., Rietzschel, E. R., Shiva-Kumar, P., De Buyzere, M. L., Zamani, P., Claessens, T., Geraci, S., Konda, P., De Bacquer, D., Akers, S. R., Gillebert, T. C., & Segers, P. (2014). Effective arterial elastance is insensitive to pulsatile arterial load. Hypertension, 64, 1022–1031.

    Article  CAS  PubMed  Google Scholar 

  40. Chemla, D., Antony, I., Lecarpentier, Y., & Nitenberg, A. (2003). Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. American Journal of Physiology. Heart and Circulatory Physiology, 285, H614–H620.

    Article  CAS  PubMed  Google Scholar 

  41. Chirinos, J. A., Segers, P., Raina, A., Saif, H., Swillens, A., Gupta, A. K., Townsend, R., Emmi Jr., A. G., Kirkpatrick, J. N., Keane, M. G., Ferrari, V. A., Wiegers, S. E., & St John Sutton, M. G. (2010). Arterial pulsatile hemodynamic load induced by isometric exercise strongly predicts left ventricular mass in hypertension. American Journal of Physiology. Heart and Circulatory Physiology, 298, H320–H330.

    Article  CAS  PubMed  Google Scholar 

  42. Townsend, R. R., Wilkinson, I. B., Schiffrin, E. L., Avolio, A. P., Chirinos, J. A., Cockcroft, J. R., Heffernan, K. S., Lakatta, E. G., McEniery, C. M., Mitchell, G. F., Najjar, S. S., Nichols, W. W., Urbina, E. M., Weber, T., & American Heart Association Council on H. (2015). Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension, 66, 698–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marwick, T. H., Gillebert, T. C., Aurigemma, G., Chirinos, J., Derumeaux, G., Galderisi, M., Gottdiener, J., Haluska, B., Ofili, E., Segers, P., Senior, R., Tapp, R. J., & Zamorano, J. L. (2015). Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). European Heart Journal. Cardiovascular Imaging, 16, 577–605.

    PubMed  Google Scholar 

  44. Chirinos, J. A., & Segers, P. (2010). Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension, 56, 555–562.

    Article  CAS  PubMed  Google Scholar 

  45. Chirinos, J. A., & Segers, P. (2010). Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure-flow and pressure-volume relations in humans. Hypertension, 56, 563–570.

    Article  CAS  PubMed  Google Scholar 

  46. Zamani, P., Bluemke, D. A., Jacobs Jr., D. R., Duprez, D. A., Kronmal, R., Lilly, S. M., Ferrari, V. A., Townsend, R. R., Lima, J. A., Budoff, M., Segers, P., Hannan, P., & Chirinos, J. A. (2015). Resistive and pulsatile arterial load as predictors of left ventricular mass and geometry: the Multi-Ethnic Study of Atherosclerosis. Hypertension, 65, 85–92.

    Article  CAS  PubMed  Google Scholar 

  47. Zamani, P., Jacobs Jr., D. R., Segers, P., Duprez, D. A., Brumback, L., Kronmal, R. A., Lilly, S. M., Townsend, R. R., Budoff, M., Lima, J. A., Hannan, P., & Chirinos, J. A. (2014). Reflection magnitude as a predictor of mortality: the Multi-Ethnic Study of Atherosclerosis. Hypertension, 64, 958–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chirinos, J. A., Kips, J. G., Roman, M. J., Medina-Lezama, J., Li, Y., Woodiwiss, A. J., Norton, G. R., Yasmin, V. B. L., Wang, J. G., Cockcroft, J. R., Devereux, R. B., Wilkinson, I. B., Segers, P., & McEniery, C. M. (2011). Ethnic differences in arterial wave reflections and normative equations for augmentation index. Hypertension, 57, 1108–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weber, T., Wassertheurer, S., O’Rourke, M. F., Haiden, A., Zweiker, R., Rammer, M., Hametner, B., & Eber, B. (2013). Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. Journal of the American College of Cardiology, 61, 1874–1883.

    Article  PubMed  Google Scholar 

  50. Goto, T., Ohte, N., Fukuta, H., Wakami, K., Tani, T., & Kimura, G. (2013). Relationship between effective arterial elastance, total vascular resistance, and augmentation index at the ascending aorta and left ventricular diastolic function in older women. Circulation Journal, 77, 123–129.

    Article  PubMed  Google Scholar 

  51. Zamani, P., Lilly, S. M., Segers, P., Jacobs Jr., D. R., Bluemke, D. A., Duprez, D. A., & Chirinos, J. A. (2016). Pulsatile load components, resistive load and incident heart failure: the Multi-Ethnic Study of Atherosclerosis (MESA). Journal of Cardiac Failure, 22, 988–995.

    Article  PubMed  Google Scholar 

  52. Chirinos, J. A., Segers, P., Duprez, D. A., Brumback, L., Bluemke, D. A., Zamani, P., Kronmal, R., Vaidya, D., Ouyang, P., Townsend, R. R., & Jacobs Jr., D. R. (2015). Late systolic central hypertension as a predictor of incident heart failure: the Multi-Ethnic Study of Atherosclerosis. Journal of the American Heart Association, 4, e001335.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chirinos, J. A., Kips, J. G., Jacobs Jr., D. R., Brumback, L., Duprez, D. A., Kronmal, R., Bluemke, D. A., Townsend, R. R., Vermeersch, S., & Segers, P. (2012). Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). Journal of the American College of Cardiology, 60, 2170–2177.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zamani, P., Rawat, D., Shiva-Kumar, P., Geraci, S., Bhuva, R., Konda, P., Doulias, P. T., Ischiropoulos, H., Townsend, R. R., Margulies, K. B., Cappola, T. P., Poole, D. C., & Chirinos, J. A. (2015). Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation, 131, 371–380 discussion 380.

    Article  CAS  PubMed  Google Scholar 

  55. Chirinos JA, Beraun M, Townsend RR, Varakantam S, Zamani P (2016). Effect of inorganic nitrate on wave reflections vs. microvascular dilatory reserve: role in improving aeobic capacity in heart failure with preserved ejection fraction. 134, A15786.

  56. Mitchell, G. F. (2004). Arterial stiffness and wave reflection in hypertension: pathophysiologic and therapeutic implications. Current Hypertension Reports, 6, 436–441.

    Article  PubMed  Google Scholar 

  57. Mitchell, G. F. (2009). Clinical achievements of impedance analysis. Medical & Biological Engineering & Computing, 47, 153–163.

    Article  Google Scholar 

  58. Nichols WW, & O’Rourke MF (2005). McDonald’s blood flow in arteries. theoretical, experimental and clinical principles. Oxford University Press.

  59. Chirinos, J. A. (2012). Arterial stiffness: basic concepts and measurement techniques. Journal of Cardiovascular Translational Research, 5, 243–255.

    Article  PubMed  Google Scholar 

  60. Phan TS, Li JK, Segers P, Reddy-Koppula M, Akers SR, Kuna ST, Gislason T, Pack AI, Chirinos JA (2016). Aging is associated with an earlier arrival of reflected waves without a distal shift in reflection sites. J Am Heart Assoc. 5.

  61. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure-flow and pressure-volume relations in humans. Hypertension, 56, 563–570.

  62. Segers, P., Stergiopulos, N., & Westerhof, N. (2000). Quantification of the contribution of cardiac and arterial remodeling to hypertension. Hypertension, 36, 760–765.

    Article  CAS  PubMed  Google Scholar 

  63. Colan, S. D., Borow, K. M., & Neumann, A. (1985). Use of the calibrated carotid pulse tracing for calculation of left ventricular pressure and wall stress throughout ejection. American Heart Journal, 109, 1306–1310.

    Article  CAS  PubMed  Google Scholar 

  64. Hashimoto, J., Nichols, W. W., O’Rourke, M. F., & Imai, Y. (2008). Association between wasted pressure effort and left ventricular hypertrophy in hypertension: influence of arterial wave reflection. American Journal of Hypertension, 21, 329–333.

    Article  PubMed  Google Scholar 

  65. Westerhof, B. E. (2008). Wave reflection: wasted effort in left ventricular hypertrophy. American Journal of Hypertension, 21, 243.

    Article  PubMed  Google Scholar 

  66. Phan TS, Li JK, Segers P, Chirinos JA (2016). Misinterpretation of the determinants of elevated forward wave amplitude inflates the role of the proximal aorta. J Am Heart Assoc, 5.

  67. Westerhof, N., Sipkema, P., van den Bos, G. C., & Elzinga, G. (1972). Forward and backward waves in the arterial system. Cardiovascular research., 6, 648–656.

    Article  CAS  PubMed  Google Scholar 

  68. Swillens, A., & Segers, P. (2008). Assessment of arterial pressure wave reflection: methodological considerations. Artery Research., 2, 9.

    Article  Google Scholar 

  69. Westerhof, B. E., & Westerhof, N. (2012). Magnitude and return time of the reflected wave: the effects of large artery stiffness and aortic geometry. Journal of Hypertension, 30, 932–939.

    Article  CAS  PubMed  Google Scholar 

  70. Mitchell, G. F., Parise, H., Benjamin, E. J., Larson, M. G., Keyes, M. J., Vita, J. A., Vasan, R. S., & Levy, D. (2004). Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham heart study. Hypertension, 43, 1239–1245.

    Article  CAS  PubMed  Google Scholar 

  71. Strauer, B. E. (1979). Myocardial oxygen consumption in chronic heart disease: role of wall stress, hypertrophy and coronary reserve. The American Journal of Cardiology, 44, 730–740.

    Article  CAS  PubMed  Google Scholar 

  72. Chirinos, J. A., Segers, P., Gupta, A. K., Swillens, A., Rietzschel, E. R., De Buyzere, M. L., Kirkpatrick, J. N., Gillebert, T. C., Wang, Y., Keane, M. G., Townsend, R., Ferrari, V. A., Wiegers, S. E., & St John, S. M. (2009). Time-varying myocardial stress and systolic pressure-stress relationship: role in myocardial-arterial coupling in hypertension. Circulation, 119, 2798–2807.

    Article  PubMed  Google Scholar 

  73. Chirinos, J. A., Segers, P., Gillebert, T. C., Gupta, A. K., De Buyzere, M. L., De Bacquer, D., St John-Sutton, M., Rietzschel, E. R., & Asklepios, I. (2012). Arterial properties as determinants of time-varying myocardial stress in humans. Hypertension, 60, 64–70.

    Article  CAS  PubMed  Google Scholar 

  74. Marwick, T. H., Gillebert, T. C., Aurigemma, G., Chirinos, J., Derumeaux, G., Galderisi, M., Gottdiener, J., Haluska, B., Ofili, E., Segers, P., Senior, R., Tapp, R. J., & Zamorano, J. L. (2015). Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). Journal of the American Society of Echocardiography, 28, 727–754.

    Article  PubMed  Google Scholar 

  75. Chirinos JA (2017). Deciphering systolic-diastolic coupling in the intact heart. Hypertension.

  76. Shah, S. J., & Wasserstrom, J. A. (2012). Increased arterial wave reflection magnitude: a novel form of stage b heart failure? Journal of the American College of Cardiology, 60, 2178–2181.

    Article  PubMed  Google Scholar 

  77. Gu H, Li Y, Fiok H, Simpson J, Kentish JC, Shah A, Chowienczyk P (2017). Reduced first-phase ejection fraction and sustained myocardial wall stress in hypertensive patients with diastolic dysfunction. Hypertension.

  78. Parker, K. H., & Jones, C. J. (1990). Forward and backward running waves in the arteries: analysis using the method of characteristics. Journal of Biomechanical Engineering, 112, 322–326.

    Article  CAS  PubMed  Google Scholar 

  79. Westerhof, N., Segers, P., & Westerhof, B. E. (2015). Wave separation, wave intensity, the reservoir-wave concept, and the instantaneous wave-free ratio: presumptions and principles. Hypertension, 66, e21.

    Article  CAS  PubMed  Google Scholar 

  80. Chirinos, J. A., & Zamani, P. (2016). The nitrate-nitrite-no pathway and its implications for heart failure and preserved ejection fraction. Current Heart Failure Reports, 13, 47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Chirinos.

Ethics declarations

Conflict of Interest

The author has received consulting honoraria from Bristol-Myers Squibb, OPKO Healthcare, Fukuda Denshi, Microsoft, Vital Labs, and Merck. He received research grants from the National Institutes of Health, American College of Radiology Network, American Heart Association, Fukuda Denshi, Bristol-Myers Squibb, Microsoft, and CVRx Inc. and device loans from AtCor Medical. He is named as inventor in a University of Pennsylvania patent application for the use of inorganic nitrates/nitrites for the treatment of Heart Failure and Preserved Ejection Fraction.

Sources of Funding

This work was supported by NIH grants R01 HL 121510-01A1 (JAC) and R56HL-124073-01A1 (JAC).

Additional information

Associate Editor Sanjiv Shah oversaw the review of this article

The original version of this article was revised: “diastole” and “mid-systole” were incorrectly given as “diastoles” and “mid-systoles”, respectively.

An erratum to this article is available at https://doi.org/10.1007/s12265-017-9745-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirinos, J.A. Deep Phenotyping of Systemic Arterial Hemodynamics in HFpEF (Part 1): Physiologic and Technical Considerations. J. of Cardiovasc. Trans. Res. 10, 245–259 (2017). https://doi.org/10.1007/s12265-017-9735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-017-9735-3

Keywords

Navigation