Skip to main content

Advertisement

Log in

Imaging Subclinical Atherosclerosis: Is It Ready for Prime Time? A Review

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Imaging subclinical atherosclerosis holds the promise of individualized cardiovascular (CV) risk assessment. The large arsenal of noninvasive imaging techniques available today is playing an increasingly important role in the diagnosis and monitoring of subclinical atherosclerosis. However, there is a debate about the advisability of clinical screens for subclinical atherosclerosis and which modality is the most appropriate for monitoring risk and atherosclerosis progression. This article offers an overview of the traditional and emerging noninvasive imaging modalities used to detect early atherosclerosis, surveys population studies addressing the value of subclinical atherosclerosis detection, and also examines guideline recommendations for their clinical implementation. The clinical relevance of this manuscript lies in the potential of current imaging technology to improve CV risk prediction based on traditional risk factors and the present recommendations for subclinical atherosclerosis assessment. Noninvasive imaging will also help to identify individuals at high CV who would benefit from intensive prevention or therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CACS:

Coronary artery calcium score

CT:

Computed tomography

CV:

Cardiovascular

IMT:

Intima-media thickness

FRS:

Framingham risk score

PET:

Positron-emission tomography

SPECT:

Single positron emission computed tomography

MRI:

Magnetic resonance imaging

References

  1. Foundation, B.H. (2005) European cardiovascular disease statistics.

  2. Wilson, P. W., et al. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97(18), 1837–1847.

    Article  PubMed  CAS  Google Scholar 

  3. Sibley, C., et al. (2006). Limitations of current cardiovascular disease risk assessment strategies in women. Journal of Women's Health (2002), 15(1), 54–56.

    Article  Google Scholar 

  4. Berry, J. D., et al. (2009). Prevalence and progression of subclinical atherosclerosis in younger adults with low short-term but high lifetime estimated risk for cardiovascular disease: the coronary artery risk development in young adults study and multi-ethnic study of atherosclerosis. Circulation, 119(3), 382–389.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grover, S. A., Coupal, L., & Hu, X. P. (1995). Identifying adults at increased risk of coronary disease. How well do the current cholesterol guidelines work? JAMA, 274(10), 801–806.

    Article  PubMed  CAS  Google Scholar 

  6. Khot, U. N., et al. (2003). Prevalence of conventional risk factors in patients with coronary heart disease. JAMA, 290(7), 898–904.

    Article  PubMed  Google Scholar 

  7. Simon, A., Chironi, G., & Levenson, J. (2006). Performance of subclinical arterial disease detection as a screening test for coronary heart disease. Hypertension, 48(3), 392–396.

    Article  PubMed  CAS  Google Scholar 

  8. Goff, D.C., Jr. et al. (2013) ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Journal of the American College of Cardiology.

  9. Fuster, V., Lois, F., & Franco, M. (2010). Early identification of atherosclerotic disease by noninvasive imaging. Nature Reviews Cardiology, 7(6), 327–333.

    Article  PubMed  Google Scholar 

  10. Achenbach, S., et al. (2001). Noninvasive coronary angiography by magnetic resonance imaging, electron-beam computed tomography, and multislice computed tomography. American Journal of Cardiology, 88(2A), 70E–73E.

    Article  PubMed  CAS  Google Scholar 

  11. Ibanez, B., et al. (2007). [Novel imaging techniques for quantifying overall atherosclerotic burden]. Revista Española de Cardiología, 60(3), 299–309.

    Article  Google Scholar 

  12. Yu, L., et al. (2009). Radiation dose reduction in computed tomography: techniques and future perspective. Medical Imaging, 1(1), 65–84.

    Article  Google Scholar 

  13. Patel, S. N., et al. (2004). Emerging, noninvasive surrogate markers of atherosclerosis. Current Atherosclerosis Reports, 6(1), 60–68.

    Article  PubMed  Google Scholar 

  14. de Groot, E., et al. (2004). Measurement of arterial wall thickness as a surrogate marker for atherosclerosis. Circulation, 109(23 Suppl 1), III33–III38.

    PubMed  Google Scholar 

  15. Baldassarre, D., et al. (2008). Carotid intima-media thickness and markers of inflammation, endothelial damage and hemostasis. Annals of Medicine, 40(1), 21–44.

    Article  PubMed  CAS  Google Scholar 

  16. Hodis, H. N., et al. (1998). The role of carotid arterial intima-media thickness in predicting clinical coronary events. Annals of Internal Medicine, 128(4), 262–269.

    Article  PubMed  CAS  Google Scholar 

  17. O’Leary, D. H., Cardiovascular Health Study Collaborative Research Group, et al. (1999). Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. New England Journal of Medicine, 340(1), 14–22.

    Article  PubMed  Google Scholar 

  18. Bots, M. L., Hofman, A., & Grobbee, D. E. (1994). Common carotid intima-media thickness and lower extremity arterial atherosclerosis. The Rotterdam Study. Arteriosclerosis and Thrombosis, 14(12), 1885–1891.

    Article  PubMed  CAS  Google Scholar 

  19. Baldassarre, D., et al. (2000). Carotid artery intima-media thickness measured by ultrasonography in normal clinical practice correlates well with atherosclerosis risk factors. Stroke, 31(10), 2426–2430.

    Article  PubMed  CAS  Google Scholar 

  20. Lorenz, M. W., et al. (2007). Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation, 115(4), 459–467.

    Article  PubMed  Google Scholar 

  21. Lind, L., et al. (2012). Effect of rosuvastatin on the echolucency of the common carotid intima-media in low-risk individuals: the METEOR trial. Journal of the American Society of Echocardiography, 25(10), 1120–1127 e1.

    Article  PubMed  Google Scholar 

  22. Smilde, T. J., et al. (2001). Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet, 357(9256), 577–581.

    Article  PubMed  CAS  Google Scholar 

  23. Raggi, P., et al. (2005). Aggressive versus moderate lipid-lowering therapy in hypercholesterolemic postmenopausal women: Beyond Endorsed Lipid Lowering with EBT Scanning (BELLES). Circulation, 112(4), 563–571.

    Article  PubMed  CAS  Google Scholar 

  24. Yerly, P., et al. (2013). Association between conventional risk factors and different ultrasound-based markers of atherosclerosis at carotid and femoral levels in a middle-aged population. International Journal of Cardiovascular Imaging, 29(3), 589–599.

    Article  PubMed  Google Scholar 

  25. Den Ruijter, H. M., et al. (2012). Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA, 308(8), 796–803.

    Article  Google Scholar 

  26. Inaba, Y., Chen, J. A., & Bergmann, S. R. (2012). Carotid plaque, compared with carotid intima-media thickness, more accurately predicts coronary artery disease events: a meta-analysis. Atherosclerosis, 220(1), 128–133.

    Article  PubMed  CAS  Google Scholar 

  27. Witte, D. R., et al. (2005). Is the association between flow-mediated dilation and cardiovascular risk limited to low-risk populations? Journal of the American College of Cardiology, 45(12), 1987–1993.

    Article  PubMed  Google Scholar 

  28. Greenland, P., et al. (2010). ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation, 122(25), e584–e636.

    Article  PubMed  Google Scholar 

  29. Laurent, S., et al. (2006). Expert consensus document on arterial stiffness: methodological issues and clinical applications. European Heart Journal, 27(21), 2588–2605.

    Article  PubMed  Google Scholar 

  30. Ross, R. F., & Young, T. F. (1993). The nature and detection of mycoplasmal immunogens. Veterinary Microbiology, 37(3–4), 369–380.

    Article  PubMed  CAS  Google Scholar 

  31. Agatston, A. S., et al. (1990). Quantification of coronary artery calcium using ultrafast computed tomography. Journal of the American College of Cardiology, 15(4), 827–832.

    Article  PubMed  CAS  Google Scholar 

  32. Hoff, J. A., et al. (2001). Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. American Journal of Cardiology, 87(12), 1335–1339.

    Article  PubMed  CAS  Google Scholar 

  33. Kondos, G. T., et al. (2003). Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation, 107(20), 2571–2576.

    Article  PubMed  Google Scholar 

  34. Wong, N. D., et al. (2000). Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. American Journal of Cardiology, 86(5), 495–498.

    Article  PubMed  CAS  Google Scholar 

  35. Arad, Y., et al. (2005). Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. Journal of the American College of Cardiology, 46(1), 158–165.

    Article  PubMed  CAS  Google Scholar 

  36. Greenland, P., et al. (2007). ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. Journal of the American College of Cardiology, 49(3), 378–402.

    Article  PubMed  Google Scholar 

  37. Bild, D. E., et al. (2005). Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation, 111(10), 1313–1320.

    Article  PubMed  Google Scholar 

  38. Fuster, V., et al. (2005). Atherothrombosis and high-risk plaque: Part II: approaches by noninvasive computed tomographic/magnetic resonance imaging. Journal of the American College of Cardiology, 46(7), 1209–1218.

    Article  PubMed  CAS  Google Scholar 

  39. Pletcher, M. J., et al. (2013). Interpretation of the coronary artery calcium score in combination with conventional cardiovascular risk factors: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation, 128(10), 1076–1084.

    Article  PubMed  Google Scholar 

  40. Hamon, M., et al. (2006). Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. Journal of the American College of Cardiology, 48(9), 1896–1910.

    Article  PubMed  Google Scholar 

  41. Prat-Gonzalez, S., Sanz, J., & Garcia, M. J. (2008). Cardiac CT: indications and limitations. Journal of Nuclear Medicine Technology, 36(1), 18–24.

    Article  PubMed  Google Scholar 

  42. Fernandez-Friera, L., et al. (2010). Lipid-rich obstructive coronary lesions is plaque characterization any important? JACC. Cardiovascular Imaging, 3(8), 893–895.

    Article  PubMed  Google Scholar 

  43. Hausleiter, J., et al. (2006). Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation, 113(10), 1305–1310.

    Article  PubMed  Google Scholar 

  44. Johri, A. M., et al. (2013). Can carotid bulb plaque assessment rule out significant coronary artery disease? A comparison of plaque quantification by two- and three-dimensional ultrasound. Journal of the American Society of Echocardiography, 26(1), 86–95.

    Article  PubMed  Google Scholar 

  45. Kalashyan, H., et al. (2014). Single sweep three-dimensional carotid ultrasound: reproducibility in plaque and artery volume measurements. Atherosclerosis, 232(2), 397–402.

    Article  PubMed  CAS  Google Scholar 

  46. Sillesen, H., et al. (2012). Carotid plaque burden as a measure of subclinical atherosclerosis: comparison with other tests for subclinical arterial disease in the high risk plaque BioImage study. JACC. Cardiovascular Imaging, 5(7), 681–689.

    Article  PubMed  Google Scholar 

  47. Makris, G. C., et al. (2011). Three-dimensional ultrasound imaging for the evaluation of carotid atherosclerosis. Atherosclerosis, 219(2), 377–383.

    Article  PubMed  CAS  Google Scholar 

  48. Corti, R., & Fuster, V. (2011). Imaging of atherosclerosis: magnetic resonance imaging. European Heart Journal, 32(14), 1709–19b.

    Article  PubMed  Google Scholar 

  49. Yuan, C., et al. (2001). In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation, 104(17), 2051–2056.

    Article  PubMed  CAS  Google Scholar 

  50. Fleg, J. L., et al. (2012). Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC. Cardiovascular Imaging, 5(9), 941–955.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Corti, R., et al. (2005). Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. Journal of the American College of Cardiology, 46(1), 106–112.

    Article  PubMed  CAS  Google Scholar 

  52. Corti, R., et al. (2002). Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation, 106(23), 2884–2887.

    Article  PubMed  CAS  Google Scholar 

  53. Underhill, H. R., et al. (2008). Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. American Heart Journal, 155(3), 584 e1–8.

    Article  Google Scholar 

  54. Tang, T. Y., et al. (2008). Correlation of carotid atheromatous plaque inflammation using USPIO-enhanced MR imaging with degree of luminal stenosis. Stroke, 39(7), 2144–2147.

    Article  PubMed  Google Scholar 

  55. Tang, T. Y., et al. (2008). Correlation of carotid atheromatous plaque inflammation with biomechanical stress: utility of USPIO enhanced MR imaging and finite element analysis. Atherosclerosis, 196(2), 879–887.

    Article  PubMed  CAS  Google Scholar 

  56. Smith, B. R., et al. (2007). Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomedical Microdevices, 9(5), 719–727.

    Article  PubMed  Google Scholar 

  57. von Zur Muhlen, C., et al. (2007). Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis, 193(1), 102–111.

    Article  Google Scholar 

  58. Briley-Saebo, K. C., et al. (2011). Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. Journal of the American College of Cardiology, 57(3), 337–347.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Hyafil, F., et al. (2011). Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases. European Heart Journal, 32(12), 1561–1571.

    Article  PubMed  PubMed Central  Google Scholar 

  60. von Bary, C., et al. (2011). MRI of coronary wall remodeling in a swine model of coronary injury using an elastin-binding contrast agent. Circulation. Cardiovascular Imaging, 4(2), 147–155.

    Article  Google Scholar 

  61. Winter, P. M., et al. (2003). Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha (v) beta3-integrin-targeted nanoparticles. Circulation, 108(18), 2270–2274.

    Article  PubMed  CAS  Google Scholar 

  62. Rudd, J. H., et al. (2010). Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? Journal of the American College of Cardiology, 55(23), 2527–2535.

    Article  PubMed  Google Scholar 

  63. Mamede, M., et al. (2005). [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia, 7(4), 369–379.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Ogawa, M., et al. (2004). (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. Journal of Nuclear Medicine, 45(7), 1245–1250.

    PubMed  CAS  Google Scholar 

  65. Tawakol, A., et al. (2005). Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. Journal of Nuclear Cardiology, 12(3), 294–301.

    Article  PubMed  Google Scholar 

  66. Rudd, J. H., et al. (2002). Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation, 105(23), 2708–2711.

    Article  PubMed  CAS  Google Scholar 

  67. Davies, J. R., et al. (2005). Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke, 36(12), 2642–2647.

    Article  PubMed  Google Scholar 

  68. Tahara, N., et al. (2006). Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. Journal of the American College of Cardiology, 48(9), 1825–1831.

    Article  PubMed  CAS  Google Scholar 

  69. Nikhil, V., & Joshi, T. A. (2014). Williams Michelle, et al., 18F-Fluoride positron emission tomography for identification of ruptured and high risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet, 383, 705–713.

    Article  Google Scholar 

  70. Aikawa, E., et al. (2007). Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation, 116(24), 2841–2850.

    Article  PubMed  CAS  Google Scholar 

  71. Ripa, R. S., et al. (2013). Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. American Journal of Nuclear Medicine and Molecular Imaging, 3(4), 361–371.

    PubMed  PubMed Central  Google Scholar 

  72. The Atherosclerosis Risk in Communities (ARIC). (1989). Study: design and objectives. The ARIC investigators. American Journal of Epidemiology, 129(4), 687–702.

    Google Scholar 

  73. Bild, D. E., et al. (2002). Multi-ethnic study of atherosclerosis: objectives and design. American Journal of Epidemiology, 156(9), 871–881.

    Article  PubMed  Google Scholar 

  74. Falk, E., et al. (2011). The high-risk plaque initiative: primary prevention of atherothrombotic events in the asymptomatic population. Current Atherosclerosis Reports, 13(5), 359–366.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ortiz, A., Jiménez-Borreguero, L., Peñalvo, J. L., Ordovas, J. M., Mocoroa, A., Fernandez-Friera, L., et al. (2013). The Progression and Early Detection of Subclinical Atherosclerosis (PESA) study: rationale and design. American Heart Journal, 133, 990–998.

    Article  Google Scholar 

  76. Fuster, V., & Vahl, T. P. (2010). The role of noninvasive imaging in promoting cardiovascular health. Journal of Nuclear Cardiology, 17(5), 781–790.

    Article  PubMed  Google Scholar 

  77. Peters, S. A., et al. (2012). Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart, 98(3), 177–184.

    Article  PubMed  Google Scholar 

  78. Naghavi, M., et al. (2006). From vulnerable plaque to vulnerable patient—Part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. American Journal of Cardiology, 98(2A), 2H–15H.

    Article  PubMed  Google Scholar 

  79. Stein, J. H., et al. (2008). Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. Journal of the American Society of Echocardiography, 21(2), 93–111. quiz 189–90.

    Article  PubMed  Google Scholar 

  80. Perk, J., et al. (2012). European guidelines on cardiovascular disease prevention in clinical practice (version, The Fifth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). G Ital Cardiology (Rome), 14(5), 328–392.

    Google Scholar 

  81. Sheikine, Y., & Akram, K. (2010). FDG-PET imaging of atherosclerosis: Do we know what we see? Atherosclerosis, 211(2), 371–380.

    Article  PubMed  CAS  Google Scholar 

  82. Ferket, B. S., et al. (2011). Systematic review of guidelines on imaging of asymptomatic coronary artery disease. Journal of the American College of Cardiology, 57(15), 1591–1600.

    Article  PubMed  Google Scholar 

  83. Hecht, H. S., et al. (2006). Coronary artery calcium scanning: clinical paradigms for cardiac risk assessment and treatment. American Heart Journal, 151(6), 1139–1146.

    Article  PubMed  CAS  Google Scholar 

  84. Taylor, A. J., et al. (2005). Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. Journal of the American College of Cardiology, 46(5), 807–814.

    Article  PubMed  CAS  Google Scholar 

  85. Raggi, P., et al. (2005). Progression of coronary artery calcium and occurrence of myocardial infarction in patients with and without diabetes mellitus. Hypertension, 46(1), 238–243.

    Article  PubMed  CAS  Google Scholar 

  86. Arad, Y., et al. (2005). Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St. Francis Heart Study randomized clinical trial. Journal of the American College of Cardiology, 46(1), 166–172.

    Article  PubMed  CAS  Google Scholar 

  87. Greenland, P., et al. (2000). Prevention Conference V: beyond secondary prevention: identifying the high-risk patient for primary prevention: noninvasive tests of atherosclerotic burden: Writing Group III. Circulation, 101(1), E16–E22.

    Article  PubMed  CAS  Google Scholar 

  88. Santos, R. D., & Nasir, K. (2009). Insights into atherosclerosis from invasive and non-invasive imaging studies: Should we treat subclinical atherosclerosis? Atherosclerosis, 205(2), 349–356.

    Article  PubMed  CAS  Google Scholar 

  89. Furberg, C. D., et al. (1994). Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Circulation, 90(4), 1679–1687.

    Article  PubMed  CAS  Google Scholar 

  90. Salonen, R., et al. (1995). Kuopio Atherosclerosis Prevention Study (KAPS). A population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries. Circulation, 92(7), 1758–1764.

    Article  PubMed  CAS  Google Scholar 

  91. Toth, P. P. (2008). Subclinical atherosclerosis: what it is, what it means and what we can do about it. International Journal of Clinical Practice, 62(8), 1246–1254.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Taylor, A. J., et al. (2002). ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation, 106(16), 2055–2060.

    Article  PubMed  CAS  Google Scholar 

  93. Lauer, M. S. (2010). Screening asymptomatic subjects for subclinical atherosclerosis: not so obvious. Journal of the American College of Cardiology, 56(2), 106–108.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Simon Bartlett (CNIC editing services) for his proficient revision of the language in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentín Fuster.

Additional information

Associate Editor Angela Taylor oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Friera, L., Ibáñez, B. & Fuster, V. Imaging Subclinical Atherosclerosis: Is It Ready for Prime Time? A Review. J. of Cardiovasc. Trans. Res. 7, 623–634 (2014). https://doi.org/10.1007/s12265-014-9582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9582-4

Keywords

Navigation