Skip to main content
Log in

Renin Inhibition Improves the Survival of Mesenchymal Stromal Cells in a Mouse Model of Myocardial Infarction

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The aim of this study was to determine if renin inhibition is able to improve the survival of transplanted stem cells in a mouse model of myocardial infarction. Myocardial infarction was induced in FVB/NJ inbred mice (n = 23). Bone marrow-derived mouse mesenchymal stromal cells (mMSCs, 3 × 105) expressing the reporter gene firefly luciferase were delivered intramyocardially (n = 12) and monitored non-invasively by bioluminescence imaging. A group of these mice (n = 6) received aliskiren (15 mg/kg/day) via an osmotic pump implanted subcutaneously. The survival of mMSCs was significantly increased in those animals that received aliskiren leading to a significant improvement in systolic function after myocardial infarction. Histological analysis revealed a significant reduction in inflammation and collagen deposition in those mice that received aliskiren compared to controls. Renin inhibition of the ischemic myocardium is able to modulate the microenvironment improving the survival and efficacy of transplanted mMSCs in a mouse model of myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gersh, B. J., Simari, R. D., Behfar, A., Terzic, C. M., & Terzic, A. (2011). Cardiac cell repair therapy: a clinical perspective. Mayo Clinic Proceedings, 84(10), 876–892. doi:10.4065/84.10.876.

    Article  Google Scholar 

  2. Assmus, B., Honold, J., Schächinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. The New England Journal of Medicine, 355(12), 1222–1232. doi:10.1056/NEJMoa051779.

    Article  CAS  PubMed  Google Scholar 

  3. Schächinger, V., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., Hölschermann, H., et al. (2006). Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. The New England Journal of Medicine, 355(12), 1210–1221. doi:10.1056/NEJMoa060186.

    Article  PubMed  Google Scholar 

  4. Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., Desmet, W., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet, 367(9505), 113–121. doi:10.1016/S0140-6736(05)67861-0.

    Article  PubMed  Google Scholar 

  5. van der Bogt, K. E. A., Sheikh, A. Y., Schrepfer, S., Hoyt, G., Cao, F., Ransohoff, K. J., et al. (2008). Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation, 118(14_suppl_1), S121–S129. doi:10.1161/CIRCULATIONAHA.107.759480.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Mazo, M., Araña, M., Pelacho, B., & Prósper, F. (2012). Mesenchymal stem cells and cardiovascular disease: a bench to bedside roadmap. Stem Cells International, 2012, 1–11. doi:10.1155/2012/175979.

    Article  Google Scholar 

  7. van der Bogt, K. E. A., Schrepfer, S., Yu, J., Sheikh, A. Y., Hoyt, G., Govaert, J. A., et al. (2009). Comparison of transplantation of adipose tissue- and bone marrow-derived mesenchymal stem cells in the infarcted heart. Transplantation, 87(5), 642–652. doi:10.1097/TP.0b013e31819609d9.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9(9), 1195–1201. doi:10.1038/nm912.

    Article  CAS  PubMed  Google Scholar 

  9. Mishra, P. K. (2008). Bone marrow-derived mesenchymal stem cells for treatment of heart failure: is it all paracrine actions and immunomodulation? Journal of Cardiovascular Medicine (Hagerstown, Md.), 9(2), 122–128. doi:10.2459/JCM.0b013e32820588f0.

    Article  Google Scholar 

  10. Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54(24), 2277–2286. doi:10.1016/j.jacc.2009.06.055.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen, S.-l., Fang, W.-w., Ye, F., Liu, Y.-H., Qian, J., Shan, S.-j., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. The American Journal of Cardiology, 94(1), 92–95. doi:10.1016/j.amjcard.2004.03.034.

    Article  PubMed  Google Scholar 

  12. Forrester, J. S., Makkar, R. R., & Marban, E. (2009). Long-term outcome of stem cell therapy for acute myocardial infarction: right results, wrong reasons. Journal of the American College of Cardiology, 53(24), 2270–2272. doi:10.1016/j.jacc.2009.03.023.

    Article  PubMed  Google Scholar 

  13. Psaltis, P. J. M. P., Peterson, K. M. B., Xu, R. M., Franchi, F. P., Witt, T. C., Chen, I. Y. M. P., et al. (2013). Noninvasive monitoring of oxidative stress in transplanted mesenchymal stromal cells. Journal of the American College of Cardiology: Cardiovascular Imaging, 6(7), 795–802. doi:10.1016/j.jcmg.2012.11.018.

    Google Scholar 

  14. Frangogiannis, N. G. (2012). Regulation of the inflammatory response in cardiac repair. Circulation Research, 110(1), 159–173. doi:10.1161/CIRCRESAHA.111.243162.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Perlini, S., Salinaro, F., & Fonte, M. L. (2008). Direct renin inhibition: another weapon to modulate the renin-angiotensin system in postinfarction remodeling? Hypertension, 52(6), 1019–1021. doi:10.1161/HYPERTENSIONAHA.108.121590.

    Article  CAS  PubMed  Google Scholar 

  16. Westermann, D., Riad, A., Lettau, O., Roks, A., Savvatis, K., Becher, P. M., et al. (2008). Renin inhibition improves cardiac function and remodeling after myocardial infarction independent of blood pressure. Hypertension, 52(6), 1068–1075. doi:10.1161/HYPERTENSIONAHA.108.116350.

    Article  CAS  PubMed  Google Scholar 

  17. Solomon, S. D., Shin, S. H., Shah, A., Skali, H., Desai, A., Kober, L., et al. (2011). Effect of the direct renin inhibitor aliskiren on left ventricular remodelling following myocardial infarction with systolic dysfunction. European Heart Journal, 32(10), 1227–1234. doi:10.1093/eurheartj/ehq522.

    Article  CAS  PubMed  Google Scholar 

  18. Soleimani, M., & Nadri, S. (2009). A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nature Protocols, 4(1), 102–106. doi:10.1038/nprot.2008.221.

    Article  CAS  PubMed  Google Scholar 

  19. Peterson, K. M., Aly, A., Lerman, A., Lerman, L. O., & Rodriguez-Porcel, M. (2011). Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress. Life Sciences, 88(1–2), 65–73. doi:10.1016/j.lfs.2010.10.023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rodriguez-Porcel, M., Gheysens, O., Paulmurugan, R., Chen, I. Y., Peterson, K. M., Willmann, J. K., et al. (2010). Antioxidants improve early survival of cardiomyoblasts after transplantation to the myocardium. Molecular Imaging and Biology: The Official Publication of the Academy of Molecular Imaging, 12(3), 325–334. doi:10.1007/s11307-009-0274-4.

    Article  Google Scholar 

  21. Wang, X., Zhao, T., Huang, W., Wang, T., Qian, J., Xu, M., et al. (2009). Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells, 27(12), 3021–3031. doi:10.1002/stem.230.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Tsubokawa, T., Yagi, K., Nakanishi, C., Zuka, M., Nohara, A., Ino, H., et al. (2010). Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia. American Journal of Physiology. Heart and Circulatory Physiology, 298(5), H1320–H1329. doi:10.1152/ajpheart.01330.2008.

    CAS  PubMed  Google Scholar 

  23. Rodriguez-Porcel, M., Gheysens, O., Chen, I. Y., Wu, J. C., & Gambhir, S. S. (2005). Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Molecular Therapy: The Journal of the American Society of Gene Therapy, 12(6), 1142–1147. doi:10.1016/j.ymthe.2005.07.532.

    Article  CAS  Google Scholar 

  24. Wu, J. C. (2003). Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation, 108(11), 1302–1305. doi:10.1161/01.CIR.0000091252.20010.6E.

    Article  PubMed  Google Scholar 

  25. Psaltis, P. J., Simari, R. D., & Rodriguez-Porcel, M. (2011). Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. European Journal of Nuclear Medicine and Molecular Imaging, 39(1), 165–181. doi:10.1007/s00259-011-1925-7.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E., et al. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation, 112(2), 214–223. doi:10.1161/CIRCULATIONAHA.104.527937.

    Article  PubMed  Google Scholar 

  27. Amsalem, Y., Mardor, Y., Feinberg, M. S., Landa, N., Miller, L., Daniels, D., et al. (2007). Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation, 116(11 Suppl), I38–I45. doi:10.1161/CIRCULATIONAHA.106.680231.

    CAS  PubMed  Google Scholar 

  28. Poss, J., Werner, C., Lorenz, D., Gensch, C., Bohm, M., & Laufs, U. (2010). The renin inhibitor aliskiren upregulates pro-angiogenic cells and reduces atherogenesis in mice. Basic Research in Cardiology, 105(6), 725–735. doi:10.1007/s00395-010-0120-5.

    Article  PubMed  Google Scholar 

  29. Singh, V. P., Le, B., Khode, R., Baker, K. M., & Kumar, R. (2008). Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes, 57(12), 3297–3306. doi:10.2337/db08-0805.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Mr. Bruce Knudsen for his assistance with the non-invasive measurement of blood pressure and Mrs. Elise Oheler for her assistance with the high-resolution ultrasonography.

Conflict of Interest

None declared.

No human studies were carried out by the authors for this article.

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees

Sources of Funding

Novartis and the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rodriguez-Porcel.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franchi, F., Ezenekwe, A., Wellkamp, L. et al. Renin Inhibition Improves the Survival of Mesenchymal Stromal Cells in a Mouse Model of Myocardial Infarction. J. of Cardiovasc. Trans. Res. 7, 560–569 (2014). https://doi.org/10.1007/s12265-014-9575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9575-3

Keywords

Navigation