Skip to main content

Advertisement

Log in

Iron and Atherosclerosis: Nailing Down a Novel Target with Magnetic Resonance

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

An Erratum to this article was published on 29 April 2014

Abstract

Iron is an essential mineral in many proteins and enzymes in human physiology, with limited means of iron elimination to maintain iron balance. Iron accrual incurs various pathological mechanisms linked to cardiovascular disease. In atherosclerosis, iron catalyzes the creation of reactive oxygen free radicals that contribute to lipid modification, which is essential to atheroma formation. Inflammation further fuels iron-related pathologic processes associated with plaque progression. Given iron’s role in atherosclerosis development, in vivo detection techniques sensitive iron are needed for translational studies targeting iron for earlier diagnosis and treatment. Magnetic resonance imaging is uniquely able to quantify iron in human tissues noninvasively and without ionizing radiation, offering appealing for longitudinal and interventional studies. Particularly intriguing is iron’s complementary biology vs. calcium, which is readily detectable by computed tomography. This review summarizes the role of iron in atherosclerosis with considerable implications for novel diagnostic and therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization. (2013). World health statistics. Geneva, Switzerland: World Health Organization.

    Google Scholar 

  2. Nemeth, E., et al. (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 306(5704), 2090–2093.

    Article  CAS  PubMed  Google Scholar 

  3. Nemeth, E., et al. (2004). IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest, 113(9), 1271–1276.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chang, C. C., et al. (2013). Simvastatin downregulates the expression of hepcidin and erythropoietin in HepG2 cells. Hemodial Int, 17(1), 116–121.

    Article  PubMed  Google Scholar 

  5. Ludwiczek, S., et al. (2003). Cytokine-mediated regulation of iron transport in human monocytic cells. Blood, 101(10), 4148–4154.

    Article  CAS  PubMed  Google Scholar 

  6. Satchell, L., & Leake, D. S. (2012). Oxidation of low-density lipoprotein by iron at lysosomal pH: implications for atherosclerosis. Biochemistry, 51(18), 3767–3775.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Saeed, O., et al. (2012). Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis. Arterioscler Thromb Vasc Biol, 32(2), 299–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rajendran, R., et al. (2012). Does iron inhibit calcification during atherosclerosis? Free Radic Biol Med, 53(9), 1675–1679.

    Article  CAS  PubMed  Google Scholar 

  9. Minqin, R., et al. (2005). The iron chelator desferrioxamine inhibits atherosclerotic lesion development and decreases lesion iron concentrations in the cholesterol-fed rabbit. Free Radic Biol Med, 38(9), 1206–1211.

    Article  CAS  PubMed  Google Scholar 

  10. Nagy, E., et al. (2010). Red cells, hemoglobin, heme, iron, and atherogenesis. Arterioscler Thromb Vasc Biol, 30(7), 1347–1353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Moreno, P. R., et al. (2008). Haptoglobin genotype is a major determinant of the amount of iron in the human atherosclerotic plaque. J Am Coll Cardiol, 52(13), 1049–1051.

    Article  CAS  PubMed  Google Scholar 

  12. Danesh, J., & Appleby, P. (1999). Coronary heart disease and iron status: meta-analyses of prospective studies. Circulation, 99(7), 852–854.

    Article  CAS  PubMed  Google Scholar 

  13. Duffy, S. J., et al. (2001). Iron chelation improves endothelial function in patients with coronary artery disease. Circulation, 103(23), 2799–2804.

    Article  CAS  PubMed  Google Scholar 

  14. Zacharski, L. R., et al. (2007). Reduction of iron stores and cardiovascular outcomes in patients with peripheral arterial disease: a randomized controlled trial. JAMA, 297(6), 603–610.

    Article  CAS  PubMed  Google Scholar 

  15. Zacharski, L. R., et al. (2013). The statin–iron nexus: anti-inflammatory intervention for arterial disease prevention. Am J Public Health, 103(4), e105–e112.

    Article  PubMed  Google Scholar 

  16. Lamas, G. A., et al. (2013). Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: the TACT randomized trial. JAMA, 309(12), 1241–1250.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Galesloot, T. E., et al. (2014). Serum hepcidin is associated with presence of plaque in postmenopausal women of a general population. Arterioscler Thromb Vasc Biol, 34(2): p.446–56.

    Google Scholar 

  18. Koeth, R. A., et al. (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. doi:10.1038/nm.3145.

    PubMed Central  PubMed  Google Scholar 

  19. Green, R., et al. (1968). Body iron excretion in man: a collaborative study. Am J Med, 45(3), 336–353.

    Article  CAS  PubMed  Google Scholar 

  20. Hallberg, L., et al. (1966). Menstrual blood loss—a population study. Variation at different ages and attempts to define normality. Acta Obstet Gynecol Scand, 45(3), 320–351.

    Article  CAS  PubMed  Google Scholar 

  21. Zacharski, L. R., et al. (2000). Association of age, sex, and race with body iron stores in adults: analysis of NHANES III data. Am Heart J, 140(1), 98–104.

    Article  CAS  PubMed  Google Scholar 

  22. Zotter, H., et al. (2004). Abnormally high serum ferritin levels among professional road cyclists. Br J Sports Med, 38(6), 704–708.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lynch, S. R., Skikne, B. S., & Cook, J. D. (1989). Food iron absorption in idiopathic hemochromatosis. Blood, 74(6), 2187–2193.

    CAS  PubMed  Google Scholar 

  24. Siddique, A., & Kowdley, K. V. (2012). Review article: the iron overload syndromes. Aliment Pharmacol Ther, 35(8), 876–893.

    Article  CAS  PubMed  Google Scholar 

  25. Fleming, D. J., et al. (1998). Dietary determinants of iron stores in a free-living elderly population: the Framingham Heart Study. Am J Clin Nutr, 67(4), 722–733.

    CAS  PubMed  Google Scholar 

  26. Milman, N. (2006). Iron and pregnancy—a delicate balance. Ann Hematol, 85(9), 559–565.

    Article  CAS  PubMed  Google Scholar 

  27. Bardella, M. T., et al. (2005). Gluten intolerance: gender- and age-related differences in symptoms. Scand J Gastroenterol, 40(1), 15–19.

    Article  PubMed  Google Scholar 

  28. Schenck, J. F. (1992). Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI. Ann N Y Acad Sci, 649, 285–301.

    Article  CAS  PubMed  Google Scholar 

  29. Hentze, M. W., Muckenthaler, M. U., & Andrews, N. C. (2004). Balancing acts: molecular control of mammalian iron metabolism. Cell, 117(3), 285–297.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmad, K. A., et al. (2002). Decreased liver hepcidin expression in the Hfe knockout mouse. Blood Cells Mol Dis, 29(3), 361–366.

    Article  CAS  PubMed  Google Scholar 

  31. Nicolas, G., et al. (2002). Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci U S A, 99(7), 4596–4601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Park, C. H., et al. (2001). Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem, 276(11), 7806–7810.

    Article  CAS  PubMed  Google Scholar 

  33. Pigeon, C., et al. (2001). A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem, 276(11), 7811–7819.

    Article  CAS  PubMed  Google Scholar 

  34. Abboud, S., & Haile, D. J. (2000). A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem, 275(26), 19906–19912.

    Article  CAS  PubMed  Google Scholar 

  35. Donovan, A., et al. (2000). Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 403(6771), 776–781.

    Article  CAS  PubMed  Google Scholar 

  36. McKie, A. T., et al. (2000). A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell, 5(2), 299–309.

    Article  CAS  PubMed  Google Scholar 

  37. Ganz, T., & Nemeth, E. (2011). Hepcidin and disorders of iron metabolism. Annu Rev Med, 62, 347–360.

    Article  CAS  PubMed  Google Scholar 

  38. Nicolas, G., et al. (2002). The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest, 110(7), 1037–1044.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Milward, E. A., et al. (2005). Is HFE involved in increased hepcidin expression and hypoferremia in inflammation and anemia of chronic disease? Hepatology, 41(4), 936–938.

    Article  PubMed  Google Scholar 

  40. Andrews, N. C. (2004). Anemia of inflammation: the cytokine–hepcidin link. J Clin Invest, 113(9), 1251–1253.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Theurl, I., et al. (2009). Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications. Blood, 113(21), 5277–5286.

    Article  CAS  PubMed  Google Scholar 

  42. Weiss, G., & Goodnough, L. T. (2005). Anemia of chronic disease. N Engl J Med, 352(10), 1011–1023.

    Article  CAS  PubMed  Google Scholar 

  43. Martinelli, N., et al. (2012). Increased serum hepcidin levels in subjects with the metabolic syndrome: a population study. PLoS One, 7(10), e48250.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kuragano, T., et al. (2011). Hepcidin as well as TNF-alpha are significant predictors of arterial stiffness in patients on maintenance hemodialysis. Nephrol Dial Transplant, 26(8), 2663–2667.

    Article  CAS  PubMed  Google Scholar 

  45. van der Weerd, N. C., et al. (2012). Hepcidin-25 in chronic hemodialysis patients is related to residual kidney function and not to treatment with erythropoiesis stimulating agents. PLoS One, 7(7), e39783.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Galesloot, T.E., et al. (2013). Serum hepcidin is associated with presence of plaque in postmenopausal women of a general population. Arteriosclerosis, Thrombosis, and Vascular Biology. doi:10.1161/ATVBAHA.113.302381

  47. Hansson, G. K. (2009). Atherosclerosis—an immune disease: the Anitschkov Lecture 2007. Atherosclerosis, 202(1), 2–10.

    Article  CAS  PubMed  Google Scholar 

  48. Vaughan, A. M., & Oram, J. F. (2006). ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J Lipid Res, 47(11), 2433–2443.

    Article  CAS  PubMed  Google Scholar 

  49. Tall, A. R. (1998). An overview of reverse cholesterol transport. Eur Heart J, 19(Suppl A), A31–A35.

    CAS  PubMed  Google Scholar 

  50. Lipinski, B., & Pretorius, E. (2012). Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron. Hematology, 17(4), 241–247.

    Article  CAS  PubMed  Google Scholar 

  51. Shiffman, D., et al. (2000). Large scale gene expression analysis of cholesterol-loaded macrophages. J Biol Chem, 275(48), 37324–37332.

    Article  CAS  PubMed  Google Scholar 

  52. Chawla, A., et al. (2001). A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell, 7(1), 161–171.

    Article  CAS  PubMed  Google Scholar 

  53. Chinetti, G., et al. (2001). PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med, 7(1), 53–58.

    Article  CAS  PubMed  Google Scholar 

  54. Bao, W., et al. (2012). Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med, 10, 119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Pignoli, P., et al. (1986). Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation, 74(6), 1399–1406.

    Article  CAS  PubMed  Google Scholar 

  56. Staub, D., et al. (2010). Contrast-enhanced ultrasound imaging of the vasa vasorum: from early atherosclerosis to the identification of unstable plaques. JACC Cardiovasc Imaging, 3(7), 761–771.

    PubMed  Google Scholar 

  57. Cappendijk, V. C., et al. (2005). Assessment of human atherosclerotic carotid plaque components with multisequence MR imaging: initial experience. Radiology, 234(2), 487–492.

    Article  PubMed  Google Scholar 

  58. Puppini, G., et al. (2006). Characterisation of carotid atherosclerotic plaque: comparison between magnetic resonance imaging and histology. Radiol Med, 111(7), 921–930.

    Article  CAS  PubMed  Google Scholar 

  59. Albuquerque, L. C., et al. (2007). Intraplaque hemorrhage assessed by high-resolution magnetic resonance imaging and C-reactive protein in carotid atherosclerosis. J Vasc Surg, 46(6), 1130–1137.

    Article  PubMed  Google Scholar 

  60. Mitsumori, L. M., et al. (2003). In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging, 17(4), 410–420.

    Article  PubMed  Google Scholar 

  61. Young, V. E., et al. (2010). Diffusion-weighted magnetic resonance imaging for the detection of lipid-rich necrotic core in carotid atheroma in vivo. Neuroradiology, 52(10), 929–936.

    Article  PubMed  Google Scholar 

  62. Moody, A. R., et al. (2003). Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation, 107(24), 3047–3052.

    Article  PubMed  Google Scholar 

  63. Qiao, Y., et al. (2011). Identification of intraplaque hemorrhage on MR angiography images: a comparison of contrast-enhanced mask and time-of-flight techniques. AJNR Am J Neuroradiol, 32(3), 454–459.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Cai, J. M., et al. (2002). Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation, 106(11), 1368–1373.

    Article  PubMed  Google Scholar 

  65. Saam, T., et al. (2005). Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol, 25(1), 234–239.

    CAS  PubMed  Google Scholar 

  66. Hatsukami, T. S., et al. (2000). Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation, 102(9), 959–964.

    Article  CAS  PubMed  Google Scholar 

  67. Cappendijk, V. C., et al. (2008). Comparison of lipid-rich necrotic core size in symptomatic and asymptomatic carotid atherosclerotic plaque: initial results. J Magn Reson Imaging, 27(6), 1356–1361.

    Article  PubMed  Google Scholar 

  68. Yuan, C., et al. (2001). In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation, 104(17), 2051–2056.

    Article  CAS  PubMed  Google Scholar 

  69. Bitar, R., et al. (2008). In vivo 3D high-spatial-resolution MR imaging of intraplaque hemorrhage. Radiology, 249(1), 259–267.

    Article  PubMed  Google Scholar 

  70. Chu, B., et al. (2004). Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke, 35(5), 1079–1084.

    Article  PubMed  Google Scholar 

  71. Kampschulte, A., et al. (2004). Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation, 110(20), 3239–3244.

    Article  CAS  PubMed  Google Scholar 

  72. Ota, H., et al. (2010). Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences. Radiology, 254(2), 551–563.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Yim, Y. J., et al. (2008). High signal intensity halo around the carotid artery on maximum intensity projection images of time-of-flight MR angiography: a new sign for intraplaque hemorrhage. J Magn Reson Imaging, 27(6), 1341–1346.

    Article  PubMed  Google Scholar 

  74. Lima, J. A., et al. (2004). Statin-induced cholesterol lowering and plaque regression after 6 months of magnetic resonance imaging-monitored therapy. Circulation, 110(16), 2336–2341.

    Article  CAS  PubMed  Google Scholar 

  75. West, A. M., et al. (2011). Low-density lipoprotein lowering does not improve calf muscle perfusion, energetics, or exercise performance in peripheral arterial disease. J Am Coll Cardiol, 58(10), 1068–1076.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Anderson, L. J., et al. (2001). Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J, 22(23), 2171–2179.

    Article  CAS  PubMed  Google Scholar 

  77. Tanner, M. A., et al. (2006). Multi-center validation of the transferability of the magnetic resonance T2* technique for the quantification of tissue iron. Haematologica, 91(10), 1388–1391.

    CAS  PubMed  Google Scholar 

  78. Westwood, M., et al. (2003). A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging, 18(1), 33–39.

    Article  PubMed  Google Scholar 

  79. Modell, B., et al. (2008). Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 10, 42.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Chavhan, G. B., et al. (2009). Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics, 29(5), 1433–1449.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Shoden, A., & Sturgeon, P. (1960). Hemosiderin. Acta Haematol, 23(6), 376–392.

    Article  CAS  Google Scholar 

  82. (2008) Diamagnetic susceptibility of organic compounds, oils, paraffins and polyethylenes. Berlin: Springer.

  83. Sharkey-Toppen, T. P., et al. (2013). Improved in vivo human carotid artery wall T(2) estimation. Magn Reson Imaging, 31(1), 44–52.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Kirk, P., et al. (2010). International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers. J Magn Reson Imaging, 32(2), 315–319.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Kolodgie, F. D., et al. (2003). Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med, 349(24), 2316–2325.

    Article  CAS  PubMed  Google Scholar 

  86. Raman, S. V., et al. (2008). In vivo atherosclerotic plaque characterization using magnetic susceptibility distinguishes symptom-producing plaques. JACC Cardiovasc Imaging, 1(1), 49–57.

    PubMed Central  PubMed  Google Scholar 

  87. Howarth, S. P., et al. (2008). In vivo positive contrast IRON sequence and quantitative T(2)* measurement confirms inflammatory burden in a patient with asymptomatic carotid atheroma after USPIO-enhanced MR imaging. J Vasc Interv Radiol, 19(3), 446–448.

    Article  PubMed  Google Scholar 

  88. Patterson, A. J., et al. (2011). In vivo carotid plaque MRI using quantitative T2* measurements with ultrasmall superparamagnetic iron oxide particles: a dose–response study to statin therapy. NMR Biomed, 24(1), 89–95.

    Article  PubMed  Google Scholar 

  89. Recalcati, S., et al. (1998). Response of monocyte iron regulatory protein activity to inflammation: abnormal behavior in genetic hemochromatosis. Blood, 91(7), 2565–2572.

    CAS  PubMed  Google Scholar 

  90. Schroeder, S., et al. (2001). Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol, 37(5), 1430–1435.

    Article  CAS  PubMed  Google Scholar 

  91. Papadopoulou, S. L., et al. (2011). Detection and quantification of coronary atherosclerotic plaque by 64-slice multidetector CT: a systematic head-to-head comparison with intravascular ultrasound. Atherosclerosis, 219(1), 163–170.

    Article  CAS  PubMed  Google Scholar 

  92. Voros, S., et al. (2011). Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging, 4(5), 537–548.

    PubMed  Google Scholar 

  93. Pletcher, M. J., et al. (2013). Interpretation of the coronary artery calcium score in combination with conventional cardiovascular risk factors: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation, 128(10), 1076–1084.

    Article  PubMed  Google Scholar 

  94. Polonsky, T. S., et al. (2010). Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA, 303(16), 1610–1616.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Hoffmann, U., et al. (2006). Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol, 47(8), 1655–1662.

    Article  PubMed  Google Scholar 

  96. Karolyi, M., et al. (2013). Classification of coronary atherosclerotic plaques ex vivo with T1, T2, and ultrashort echo time CMR. JACC Cardiovasc Imaging, 6(4), 466–474.

    PubMed Central  PubMed  Google Scholar 

  97. Wu, Z., et al. (2009). Identification of calcification with MRI using susceptibility-weighted imaging: a case study. J Magn Reson Imaging, 29(1), 177–182.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Greenland, P., et al. (2010). 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, 56(25), e50–e103.

    Article  PubMed  Google Scholar 

  99. Mani, V., et al. (2006). Carotid black blood MRI burden of atherosclerotic disease assessment correlates with ultrasound intima–media thickness. J Cardiovasc Magn Reson, 8(3), 529–534.

    Article  PubMed  Google Scholar 

  100. Baldassarre, D., et al. (2008). Carotid intima–media thickness and markers of inflammation, endothelial damage and hemostasis. Ann Med, 40(1), 21–44.

    Article  CAS  PubMed  Google Scholar 

  101. Kastelein, J. J., et al. (2008). Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med, 358(14), 1431–1443.

    Article  CAS  PubMed  Google Scholar 

  102. Brott, T. G., et al. (2011). 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery Developed in Collaboration With the American Academy of Neurology and Society of Cardiovascular Computed Tomography. J Am Coll Cardiol, 57(8), 1002–1044.

    Article  PubMed  Google Scholar 

  103. Gerhard-Herman, M., et al. (2006). Guidelines for noninvasive vascular laboratory testing: a report from the American Society of Echocardiography and the Society for Vascular Medicine and Biology. Vasc Med, 11(3), 183–200.

    Article  PubMed  Google Scholar 

  104. Takaya, N., et al. (2006). Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI—initial results. Stroke, 37(3), 818–823.

    Article  PubMed  Google Scholar 

  105. Giroud, D., et al. (1992). Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol, 69(8), 729–732.

    Article  CAS  PubMed  Google Scholar 

  106. Araujo, J. A., Zhang, M., & Yin, F. (2012). Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol, 3, 119.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Cooke, K. S., et al. (2013). A fully human anti-hepcidin antibody modulates iron metabolism in both mice and nonhuman primates. Blood, 122(17), 3054–3061.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subha V. Raman.

Additional information

Associate Editor Angela Taylor oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharkey-Toppen, T.P., Tewari, A.K. & Raman, S.V. Iron and Atherosclerosis: Nailing Down a Novel Target with Magnetic Resonance. J. of Cardiovasc. Trans. Res. 7, 533–542 (2014). https://doi.org/10.1007/s12265-014-9551-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9551-y

Keywords

Navigation