Skip to main content
Log in

Beneficial Cardiac Effects of Caloric Restriction Are Lost with Age in a Murine Model of Obesity

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Obesity is associated with increased diastolic stiffness and myocardial steatosis and dysfunction. The impact of aging on the protective effects of caloric restriction (CR) is not clear. We studied 2-month (younger) and 6–7-month (older)-old ob/ob mice and age-matched C57BL/6J controls (WT). Ob/ob mice were assigned to diet ad libitum or CR for 4 weeks. We performed echocardiograms, myocardial triglyceride assays, Oil Red O staining, and measured free fatty acids, superoxide, NOS activity, ceramide levels, and Western blots. In younger mice, CR restored diastolic function, reversed myocardial steatosis, and upregulated Akt phosphorylation. None of these changes was observed in the older mice; however, CR decreased oxidative stress and normalized NOS activity in these animals. Interestingly, myocardial steatosis was not associated with increased ceramide, but CR altered the composition of ceramides. In this model of obesity, aging attenuates the benefits of CR on myocardial structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cepeda-Valery, B., Pressman, G. S., Figueredo, V. M., & Romero-Corral, A. (2011). Impact of obesity on total and cardiovascular mortality—fat or fiction? Nature Reviews Cardiology, 8, 233–237.

    Article  PubMed  Google Scholar 

  2. Barouch, L. A., Berkowitz, D. E., Harrison, R. W., O'Donnell, C. P., & Hare, J. M. (2003). Disruption of leptin signaling contributes to cardiac hypertrophy independently of body weight in mice. Circulation, 108, 754–759.

    Article  PubMed  CAS  Google Scholar 

  3. Mazumder, P. K., O'Neill, B. T., Roberts, M. W., et al. (2004). Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes, 53, 2366–2374.

    Article  PubMed  CAS  Google Scholar 

  4. Abel, E. D., Litwin, S. E., & Sweeney, G. (2008). Cardiac remodeling in obesity. Physiological Reviews, 88, 389–419.

    Article  PubMed  CAS  Google Scholar 

  5. Barouch, L. A., Gao, D., Chen, L., et al. (2006). Cardiac myocyte apoptosis is associated with increased DNA damage and decreased survival in murine models of obesity. Circulation Research, 98, 119–124.

    Article  PubMed  CAS  Google Scholar 

  6. Silvani, A., Bastianini, S., Berteotti, C., Franzini, C., Lenzi, P., Lo Martire, V., et al. (2009). Sleep modulates hypertension in leptin-deficient obese mice. Hypertension, 53, 251–255.

    Article  PubMed  CAS  Google Scholar 

  7. Buchanan, J., Mazumder, P. K., Hu, P., et al. (2005). Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology, 146, 5341–5349.

    Article  PubMed  CAS  Google Scholar 

  8. Christoffersen, C., Bollano, E., Lindegaard, M. L. S., Bartels, E. D., Goetze, J. P., Andersen, C. B., et al. (2003). Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology, 144, 3483–3490.

    Article  PubMed  CAS  Google Scholar 

  9. Brindley, D. N., Kok, B. P. C., Kienesberger, P. C., Lehner, R., & Dyck, J. R. B. (2010). Shedding light on the enigma of myocardial lipotoxicity: the involvement of known and putative regulators of fatty acid storage and mobilization. American Journal of Physiology, Endocrinology and Metabolism, 298, E897–E908.

    Article  CAS  Google Scholar 

  10. Park, T. S., Yamashita, H., Blaner, W. S., & Goldberg, I. J. (2007). Lipids in the heart: a source of fuel and a source of toxins. Current Opinion in Lipidology, 18, 277–282.

    Article  PubMed  CAS  Google Scholar 

  11. Bugger, H., & Abel, E. D. (2008). Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clinical Science, 114, 195–210.

    Article  PubMed  CAS  Google Scholar 

  12. Chiu, H. C., Kovacs, A., Ford, D. A., et al. (2001). A novel mouse model of lipotoxic cardiomyopathy. Journal of Clinical Investigation, 107, 813–822.

    Article  PubMed  CAS  Google Scholar 

  13. Boudina, S., Sena, S., O'Neill, B. T., Tathireddy, P., Young, M. E., & Abel, E. D. (2005). Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation, 112, 2686–2695.

    Article  PubMed  Google Scholar 

  14. Boudina, S., Sena, S., Theobald, H., et al. (2007). Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes, 56, 2457–2466.

    Article  PubMed  CAS  Google Scholar 

  15. Aronis, A., Madar, Z., & Tirosh, O. (2005). Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radical Biology & Medicine, 38, 1221–1230.

    Article  CAS  Google Scholar 

  16. Bielawska, A. E., Shapiro, J. P., Jiang, L., et al. (1997). Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. American Journal of Pathology, 151, 1257–1263.

    PubMed  CAS  Google Scholar 

  17. Kong, J. Y., Klassen, S. S., & Rabkin, S. W. (2005). Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: a potential mechanism for loss of mitochondrial transmembrane potential and apoptosis. Molecular and Cellular Biochemistry, 278, 39–51.

    Article  PubMed  CAS  Google Scholar 

  18. Parra, V., Eisner, V., Chiong, M., et al. (2008). Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovascular Research, 77, 387–397.

    Article  PubMed  CAS  Google Scholar 

  19. Listenberger, L. L., Han, X. L., Lewis, S. E., Cases, S., Farese, R. V., Ory, D. S., et al. (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 100, 3077–3082.

    Article  PubMed  CAS  Google Scholar 

  20. de Vries, J. E., Vork, M. M., Roemen, T., de Jong, Y. F., Cleutjens, J., Van Der Vusse, G., et al. (1997). Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. Journal of Lipid Research, 38, 1384.

    PubMed  Google Scholar 

  21. Weiss, E. P., & Fontana, L. (2011). Caloric restriction: powerful protection for the aging heart and vasculature. American Journal of Physiology-Heart and Circulatory Physiology, 301, H1205–H1219.

    Article  PubMed  CAS  Google Scholar 

  22. Shinmura, K., Tamaki, K., Sano, M., Murata, M., Yamakawa, H., Ishida, H., et al. (2011). Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. Journal of Molecular and Cellular Cardiology, 50, 117–127.

    Article  PubMed  CAS  Google Scholar 

  23. Viljanen, A. P. M., Karmi, A., Borra, R., et al. (2009). Effect of caloric restriction on myocardial fatty acid uptake, left ventricular mass, and cardiac work in obese adults. The American Journal of Cardiology, 103, 1721–1726.

    Article  PubMed  CAS  Google Scholar 

  24. Hammer, S., Snel, M., Lamb, H. J., et al. (2008). Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. Journal of the American College of Cardiology, 52, 1006–1012.

    Article  PubMed  CAS  Google Scholar 

  25. Sloan, C., Tuinei, J., Nemetz, K., et al. (2011). Central leptin signaling is required to normalize myocardial fatty acid oxidation rates in caloric-restricted ob/ob mice. Diabetes, 60, 1424–1434.

    Article  PubMed  CAS  Google Scholar 

  26. Rame, J. E., Barouch, L. A., Sack, M. N., et al. (2011). Caloric restriction in leptin deficiency does not correct myocardial steatosis: failure to normalize PPAR alpha/PGC1 alpha and thermogenic glycerolipid/fatty acid cycling. Physiological Genomics, 43, 726–738.

    Article  PubMed  CAS  Google Scholar 

  27. Breslow, M. J., Min-Lee, K., Brown, D. R., Chacko, V. P., Palmer, D., & Berkowitz, D. E. (1999). Effect of leptin deficiency on metabolic rate in ob/ob mice. American Journal of Physiology, Endocrinology and Metabolism, 276, E443–E449.

    CAS  Google Scholar 

  28. Morricone, L., Malavazos, A. E., Coman, C., Donati, C., Hassan, T., & Caviezel, F. (2002). Echocardiographic abnormalities in normotensive obese patients: relationship with visceral fat. Obesity Research, 10, 489–498.

    Article  PubMed  Google Scholar 

  29. Münzel, T., Afanas’ev, I. B., Kleschyov, A. L., & Harrison, D. G. (2002). Detection of superoxide in vascular tissue. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1761–1768.

    Article  PubMed  Google Scholar 

  30. Moens, A. L., Leyton-Mange, J. S., Niu, X., et al. (2009). Adverse ventricular remodeling and exacerbated NOS uncoupling from pressure-overload in mice lacking the beta3-adrenoreceptor. Journal of Molecular and Cellular Cardiology, 47, 576–585.

    Article  PubMed  CAS  Google Scholar 

  31. Takimoto, E., Champion, H. C., Li, M., et al. (2005). Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. The Journal of Clinical Investigation, 115, 1221–1231.

    PubMed  CAS  Google Scholar 

  32. Bielawski, J., Szulc, Z. M., Hannun, Y. A., & Bielawska, A. (2006). Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods, 39, 82–91.

    Article  PubMed  CAS  Google Scholar 

  33. Birse, R. T., & Bodmer, R. (2011). Lipotoxicity and cardiac dysfunction in mammals and Drosophila. Critical Reviews in Biochemistry and Molecular Biology, 46, 376–385.

    Article  PubMed  CAS  Google Scholar 

  34. Korosoglou, G., Humpert, P. M., Ahrens, J., et al. (2012). Left ventricular diastolic function in type 2 diabetes mellitus is associated with myocardial triglyceride content but not with impaired myocardial perfusion reserve. Journal of Magnetic Resonance Imaging, 35, 804–811.

    Article  PubMed  Google Scholar 

  35. Sikka, G., Yang, R., Reid, S., et al. (2010). Leptin is essential in maintaining normal vascular compliance independent of body weight. International Journal of Obesity, 34, 203–206.

    Article  PubMed  CAS  Google Scholar 

  36. Kaltman, A. J., & Goldring, R. M. (1976). Role of circulatory congestion in the cardiorespiratory failure of obesity. American Journal of Medicine, 60, 645–653.

    Article  PubMed  CAS  Google Scholar 

  37. Lakatta, E. G. (1987). Do hypertension and aging have a similar effect on the myocardium? Circulation, 75, I69–I77.

    PubMed  CAS  Google Scholar 

  38. Ren, J., Dong, F., Cai, G. J., Zhao, P., Nunn, J. M., Wold, L. E., et al. (2010). Interaction between age and obesity on cardiomyocyte contractile function: role of leptin and stress signaling. PLoS One, 5, e10085.

    Article  PubMed  Google Scholar 

  39. Zhen, J., Lu, H., Wang, X. Q., Vaziri, N. D., & Zhou, X. J. (2008). Upregulation of endothelial and inducible nitric oxide synthase expression by reactive oxygen species. American Journal of Hypertension, 21, 28–34.

    Article  PubMed  CAS  Google Scholar 

  40. Luo, J., Xuan, Y. T., Gu, Y., & Prabhu, S. D. (2006). Prolonged oxidative stress inverts the cardiac force-frequency relation: role of altered calcium handling and myofilament calcium responsiveness. Journal of Molecular and Cellular Cardiology, 40, 64–75.

    Article  PubMed  CAS  Google Scholar 

  41. Balaban, R. S., Nemoto, S., & Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell, 120, 483–495.

    Article  PubMed  CAS  Google Scholar 

  42. Dai, D. F., Rabinovitch, P. S., & Ungvari, Z. (2012). Mitochondria and cardiovascular aging. Circulation Research, 110, 1109–1124.

    Article  PubMed  CAS  Google Scholar 

  43. Bakris, G. L., Bank, A. J., Kass, D. A., Neutel, J. M., Preston, R. A., & Oparil, S. (2004). Advanced glycation end-product cross-link breakers. A novel approach to cardiovascular pathologies related to the aging process. American Journal of Hypertension, 17, 23s–30s.

    Article  PubMed  CAS  Google Scholar 

  44. Liu, L., Shi, X., Bharadwaj, K. G., et al. (2009). DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. Journal of Biological Chemistry, 284, 36312–36323.

    Article  PubMed  CAS  Google Scholar 

  45. Hernández-Corbacho, M. J., Jenkins, R. W., Clarke, C. J., Hannun, Y. A., Obeid, L. M., Snider, A. J., et al. (2011). Accumulation of long-chain glycosphingolipids during aging is prevented by caloric restriction. PLoS One, 6, e20411.

    Article  PubMed  Google Scholar 

  46. Wu, M. Z., Katta, A., Gadde, M. K., et al. (2009). Aging-associated dysfunction of Akt/protein kinase B: S-nitrosylation and acetaminophen intervention. Plos One, 4(7), e6430.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors are grateful for the financial support of the American Heart Association Beginning Grant-In-Aid [to L.A.B.], American Diabetes Association [to L.A.B.], and the National Institutes of Health [5T32HL007227 to V.L.W]. There are no relationships to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili A. Barouch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AlGhatrif, M., Watts, V.L., Niu, X. et al. Beneficial Cardiac Effects of Caloric Restriction Are Lost with Age in a Murine Model of Obesity. J. of Cardiovasc. Trans. Res. 6, 436–445 (2013). https://doi.org/10.1007/s12265-013-9453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9453-4

Keywords

Navigation