Skip to main content

Advertisement

Log in

Nuclear Reprogramming with c-Myc Potentiates Glycolytic Capacity of Derived Induced Pluripotent Stem Cells

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Reprogramming strategies influence the differentiation capacity of derived induced pluripotent stem (iPS) cells. Removal of the reprogramming factor c-Myc reduces tumorigenic incidence and increases cardiogenic potential of iPS cells. c-Myc is a regulator of energy metabolism, yet the impact on metabolic reprogramming underlying pluripotent induction is unknown. Here, mitochondrial and metabolic interrogation of iPS cells derived with (4F) and without (3F) c-Myc demonstrated that nuclear reprogramming consistently reverted mitochondria to embryonic-like immature structures. Metabolomic profiling segregated derived iPS cells from the parental somatic source based on the attained pluripotency-associated glycolytic phenotype and discriminated between 3F versus 4F clones based upon glycolytic intermediates. Real-time flux analysis demonstrated a greater glycolytic capacity in 4F iPS cells, in the setting of equivalent oxidative capacity to 3F iPS cells. Thus, inclusion of c-Myc potentiates the pluripotent glycolytic behavior of derived iPS cells, supporting c-Myc-free reprogramming as a strategy to facilitate oxidative metabolism-dependent lineage engagement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  PubMed  CAS  Google Scholar 

  2. Yamanaka, S. (2012). Induced pluripotent stem cells: past, present, and future. Cell Stem Cell, 10(6), 678–684.

    Article  PubMed  CAS  Google Scholar 

  3. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  PubMed  CAS  Google Scholar 

  4. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.

    Article  PubMed  CAS  Google Scholar 

  5. Hochedlinger, K., & Plath, K. (2009). Epigenetic reprogramming and induced pluripotency. Development, 136(4), 509–523.

    Article  PubMed  CAS  Google Scholar 

  6. Nelson, T. J., & Terzic, A. (2011). Induced pluripotent stem cells: an emerging theranostics platform. Clinical Pharmacology and Therapeutics, 89(5), 648–650.

    Article  PubMed  CAS  Google Scholar 

  7. Inoue, H., & Yamanaka, S. (2011). The use of induced pluripotent stem cells in drug development. Clinical Pharmacology and Therapeutics, 89(5), 655–661.

    Article  PubMed  CAS  Google Scholar 

  8. Cherry, A. B., & Daley, G. Q. (2012). Reprogramming cellular identity for regenerative medicine. Cell, 148(6), 1110–1122.

    Article  PubMed  CAS  Google Scholar 

  9. Daley, G. Q. (2012). The promise and perils of stem cell therapeutics. Cell Stem Cell, 10(6), 740–749.

    Article  PubMed  CAS  Google Scholar 

  10. Sun, N., Longaker, M. T., & Wu, J. C. (2010). Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle, 9(5), 880–885.

    Article  PubMed  CAS  Google Scholar 

  11. Hussein, S. M., Nagy, K., & Nagy, A. (2011). Human induced pluripotent stem cells: the past, present, and future. Clinical Pharmacology and Therapeutics, 89(5), 741–745.

    Article  PubMed  CAS  Google Scholar 

  12. Ghosh, Z., Huang, M., Hu, S., Wilson, K. D., Dey, D., & Wu, J. C. (2011). Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells. Cancer Research, 71(14), 5030–5039.

    Article  PubMed  CAS  Google Scholar 

  13. Wernig, M., Meissner, A., Cassady, J. P., & Jaenisch, R. (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2(1), 10–12.

    Article  PubMed  CAS  Google Scholar 

  14. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.

    Article  PubMed  CAS  Google Scholar 

  15. Martinez-Fernandez, A., Nelson, T. J., Yamada, S., Reyes, S., Alekseev, A. E., Perez-Terzic, C., et al. (2009). iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circulation Research, 105(7), 648–656.

    Article  PubMed  CAS  Google Scholar 

  16. Martinez-Fernandez, A., Nelson, T. J., & Terzic, A. (2011). Nuclear reprogramming strategy modulates differentiation potential of induced pluripotent stem cells. Journal of Cardiovascular Translational Research, 4(2), 131–137.

    Article  PubMed  Google Scholar 

  17. Martinez-Fernandez, A., Nelson, T. J., Ikeda, Y., & Terzic, A. (2010). c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. Journal of Cardiovascular Translational Research, 3(1), 13–23.

    Article  PubMed  Google Scholar 

  18. Varlakhanova, N. V., Cotterman, R. F., deVries, W. N., Morgan, J., Donahue, L. R., Murray, S., et al. (2010). myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation, 80(1), 9–19.

    Article  PubMed  CAS  Google Scholar 

  19. Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T., & Yamanaka, S. (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14152–14157.

    Article  PubMed  CAS  Google Scholar 

  20. Zhong, W., Mao, S., Tobis, S., Angelis, E., Jordan, M. C., Roos, K. P., et al. (2006). Hypertrophic growth in cardiac myocytes is mediated by Myc through a cyclin D2-dependent pathway. EMBO Journal, 25(16), 3869–3879.

    Article  PubMed  CAS  Google Scholar 

  21. Izumo, S., Nadal-Ginard, B., & Mahdavi, V. (1988). Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 85(2), 339–343.

    Article  PubMed  CAS  Google Scholar 

  22. Xiao, G., Mao, S., Baumgarten, G., Serrano, J., Jordan, M. C., Roos, K. P., et al. (2001). Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis. Circulation Research, 89(12), 1122–1129.

    Article  PubMed  CAS  Google Scholar 

  23. Dang, C. V. (2012). MYC on the path to cancer. Cell, 149(1), 22–35.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, J. W., Zeller, K. I., Wang, Y., Jegga, A. G., Aronow, B. J., O'Donnell, K. A., et al. (2004). Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Molecular and Cellular Biology, 24(13), 5923–5936.

    Article  PubMed  CAS  Google Scholar 

  25. Osthus, R. C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., et al. (2000). Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. Journal of Biological Chemistry, 275(29), 21797–21800.

    Article  PubMed  CAS  Google Scholar 

  26. Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., et al. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 6658–6663.

    Article  PubMed  CAS  Google Scholar 

  27. Li, F., Wang, Y., Zeller, K. I., Potter, J. J., Wonsey, D. R., O'Donnell, K. A., et al. (2005). Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Molecular and Cellular Biology, 25(14), 6225–6234.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., et al. (2007). HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 11(5), 407–420.

    Article  PubMed  CAS  Google Scholar 

  29. Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.

    Article  PubMed  CAS  Google Scholar 

  30. Liu, W., Le, A., Hancock, C., Lane, A. N., Dang, C. V., Fan, T. W., et al. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 8983–8988.

    Article  PubMed  CAS  Google Scholar 

  31. Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309–314.

    Article  PubMed  CAS  Google Scholar 

  32. Dang, C. V. (2007). The interplay between MYC and HIF in the Warburg effect. Ernst Schering Foundation Symposium Proceedings, 4, 35–53.

    Article  PubMed  Google Scholar 

  33. Folmes, C. D., Nelson, T. J., Martinez-Fernandez, A., Arrell, D. K., Lindor, J. Z., Dzeja, P. P., et al. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism, 14(2), 264–271.

    Article  PubMed  CAS  Google Scholar 

  34. Panopoulos, A. D., Yanes, O., Ruiz, S., Kida, Y. S., Diep, D., Tautenhahn, R., et al. (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 22(1), 168–177.

    Article  PubMed  CAS  Google Scholar 

  35. Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., et al. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell, 7(6), 651–655.

    Article  PubMed  CAS  Google Scholar 

  36. Panopoulos, A. D., & Izpisua Belmonte, J. C. (2011). Anaerobicizing into pluripotency. Cell Metabolism, 14(2), 143–144.

    Article  PubMed  CAS  Google Scholar 

  37. Folmes, C. D., Dzeja, P. P., Nelson, T. J., & Terzic, A. (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell, 11(5), 596–606.

    Article  PubMed  CAS  Google Scholar 

  38. Varum, S., Rodrigues, A. S., Moura, M. B., Momcilovic, O., Easley, C. A., Ramalho-Santos, J., et al. (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One, 6(6), e20914.

    Article  PubMed  CAS  Google Scholar 

  39. Prigione, A., Fauler, B., Lurz, R., Lehrach, H., & Adjaye, J. (2010). The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells, 28(4), 721–733.

    Article  PubMed  CAS  Google Scholar 

  40. Armstrong, L., Tilgner, K., Saretzki, G., Atkinson, S. P., Stojkovic, M., Moreno, R., et al. (2010). Human induced pluripotent stem cell lines show similar stress defence mechanisms and mitochondrial regulation to human embryonic stem cells. Stem Cells, 28(4), 661–673.

    Article  PubMed  CAS  Google Scholar 

  41. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Mael, A. A., Terzic, A., & Ikeda, Y. (2009). Induced pluripotent reprogramming from promiscuous human stemness-related factors. Clinical and Translational Science, 2(2), 118–126.

    Article  PubMed  CAS  Google Scholar 

  42. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.

    Article  PubMed  Google Scholar 

  43. Zeller, K. I., Jegga, A. G., Aronow, B. J., O'Donnell, K. A., & Dang, C. V. (2003). An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biology, 4(10), R69.

    Article  PubMed  Google Scholar 

  44. Faustino, R. S., Behfar, A., Perez-Terzic, C., & Terzic, A. (2008). Genomic chart guiding embryonic stem cell cardiopoiesis. Genome Biology, 9(1), R6.

    Article  PubMed  Google Scholar 

  45. Nelson, T. J., Faustino, R. S., Chiriac, A., Crespo-Diaz, R., Behfar, A., & Terzic, A. (2008). Cxcr4+/Flk-1+ Biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells, 26(14), 1464–1473.

    Article  PubMed  CAS  Google Scholar 

  46. Perez-Terzic, C., Faustino, R. S., Boorsma, B. J., Arrell, D. K., Niederlander, N. J., Behfar, A., et al. (2007). Stem cells transform into a cardiac phenotype with remodeling of the nuclear transport machinery. Nature Clinical Practice. Cardiovascular Medicine, 4(Suppl 1), S68–76.

    Article  PubMed  CAS  Google Scholar 

  47. Turner, W. S., Seagle, C., Galanko, J. A., Favorov, O., Prestwich, G. D., Macdonald, J. M., et al. (2008). Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells, 26(6), 1547–1555.

    Article  PubMed  CAS  Google Scholar 

  48. Shao, G., Kautz, R., Peng, S., Cui, G., & Giese, R. W. (2007). Calibration by NMR for quantitative analysis: p-toluenesulfonic acid as a reference substance. Journal of Chromatography. A, 1138(1–2), 305–308.

    Article  PubMed  CAS  Google Scholar 

  49. Govindaraju, V., Young, K., & Maudsley, A. A. (2000). Proton NMR chemical shifts and coupling constants for brain metabolites. NMR in Biomedicine, 13(3), 129–153.

    Article  PubMed  CAS  Google Scholar 

  50. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research, 37(Database issue), D603–610.

    Article  PubMed  CAS  Google Scholar 

  51. Wu, M., Neilson, A., Swift, A. L., Moran, R., Tamagnine, J., Parslow, D., et al. (2007). Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. American Journal of Physiology. Cell Physiology, 292(1), C125–136.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang, J., Nuebel, E., Wisidagama, D. R., Setoguchi, K., Hong, J. S., Van Horn, C. M., et al. (2012). Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nature Protocols, 7(6), 1068–1085.

    Article  PubMed  CAS  Google Scholar 

  53. Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37(Web Server issue), W652–660.

    Article  PubMed  CAS  Google Scholar 

  54. Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40(Web Server issue), W127–133.

    Article  PubMed  Google Scholar 

  55. Lindon, J. C., & Nicholson, J. K. (2008). Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annual Review of Analytical Chemistry, 1, 45–69.

    Article  PubMed  CAS  Google Scholar 

  56. Folmes, C. D., Nelson, T. J., Dzeja, P. P., & Terzic, A. (2012). Energy metabolism plasticity enables stemness programs. Annals of the New York Academy of Sciences, 1254(1), 82–89.

    Article  PubMed  CAS  Google Scholar 

  57. Prigione, A., Lichtner, B., Kuhl, H., Struys, E. A., Wamelink, M., Lehrach, H., et al. (2011). Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Stem Cells, 29(9), 1338–1348.

    PubMed  CAS  Google Scholar 

  58. Zeuschner, D., Mildner, K., Zaehres, H., & Scholer, H. R. (2010). Induced pluripotent stem cells at nanoscale. Stem Cells and Development, 19(5), 615–620.

    Article  PubMed  CAS  Google Scholar 

  59. Suhr, S. T., Chang, E. A., Tjong, J., Alcasid, N., Perkins, G. A., Goissis, M. D., et al. (2010). Mitochondrial rejuvenation after induced pluripotency. PLoS One, 5(11), e14095.

    Article  PubMed  CAS  Google Scholar 

  60. Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., & Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5(3), 237–241.

    Article  PubMed  CAS  Google Scholar 

  61. Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., et al. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140–1144.

    Article  PubMed  CAS  Google Scholar 

  62. Banito, A., Rashid, S. T., Acosta, J. C., Li, S., Pereira, C. F., Geti, I., et al. (2009). Senescence impairs successful reprogramming to pluripotent stem cells. Genes & Development, 23(18), 2134–2139.

    Article  CAS  Google Scholar 

  63. Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126(1), 107–120.

    Article  PubMed  CAS  Google Scholar 

  64. Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., et al. (2009). Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature, 460(7259), 1132–1135.

    Article  PubMed  CAS  Google Scholar 

  65. Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Canamero, M., et al. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 460(7259), 1136–1139.

    Article  PubMed  CAS  Google Scholar 

  66. Marion, R. M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., et al. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460(7259), 1149–1153.

    Article  PubMed  CAS  Google Scholar 

  67. Folmes, C. D. L., Dzeja, P. P., Nelson, T. J., & Terzic, A. (2012). Mitochondria in control of cell fate. Circulation Research, 110(4), 526–529.

    Article  PubMed  CAS  Google Scholar 

  68. Chung, S., Arrell, D. K., Faustino, R. S., Terzic, A., & Dzeja, P. P. (2010). Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. Journal of Molecular and Cellular Cardiology, 48(4), 725–734.

    Article  PubMed  CAS  Google Scholar 

  69. Chung, S., Dzeja, P. P., Faustino, R. S., Perez-Terzic, C., Behfar, A., & Terzic, A. (2007). Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nature Clinical Practice. Cardiovascular Medicine, 4(Suppl 1), S60–67.

    Article  PubMed  CAS  Google Scholar 

  70. Folmes, C. D., Nelson, T. J., & Terzic, A. (2011). Energy metabolism in nuclear reprogramming. Biomarkers in Medicine, 5(6), 715–729.

    Article  PubMed  CAS  Google Scholar 

  71. Dzeja, P. P., Chung, S., Faustino, R. S., Behfar, A., & Terzic, A. (2011). Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PLoS One, 6(4), e19300.

    Article  PubMed  CAS  Google Scholar 

  72. St John, J. C., Ramalho-Santos, J., Gray, H. L., Petrosko, P., Rawe, V. Y., Navara, C. S., et al. (2005). The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning and Stem Cells, 7(3), 141–153.

    Article  PubMed  CAS  Google Scholar 

  73. Cho, Y. M., Kwon, S., Pak, Y. K., Seol, H. W., Choi, Y. M., do Park, J., et al. (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochemical and Biophysical Research Communications, 348(4), 1472–1478.

    Article  PubMed  CAS  Google Scholar 

  74. Facucho-Oliveira, J. M., Alderson, J., Spikings, E. C., Egginton, S., & St John, J. C. (2007). Mitochondrial DNA replication during differentiation of murine embryonic stem cells. Journal of Cell Science, 120(Pt 22), 4025–4034.

    Article  PubMed  CAS  Google Scholar 

  75. Facucho-Oliveira, J. M., & St John, J. C. (2009). The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Reviews and Reports, 5(2), 140–158.

    Article  PubMed  CAS  Google Scholar 

  76. Hom, J. R., Quintanilla, R. A., Hoffman, D. L., de Mesy Bentley, K. L., Molkentin, J. D., Sheu, S. S., et al. (2011). The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Developmental Cell, 21(3), 469–478.

    Article  PubMed  CAS  Google Scholar 

  77. Bracha, A. L., Ramanathan, A., Huang, S., Ingber, D. E., & Schreiber, S. L. (2010). Carbon metabolism-mediated myogenic differentiation. Nature Chemical Biology, 6(3), 202–204.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang, J., Khvorostov, I., Hong, J. S., Oktay, Y., Vergnes, L., Nuebel, E., et al. (2011). UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO Journal, 30(24), 4860–4873.

    Article  PubMed  CAS  Google Scholar 

  79. Tormos, K. V., Anso, E., Hamanaka, R. B., Eisenbart, J., Joseph, J., Kalyanaraman, B., et al. (2011). Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metabolism, 14(4), 537–544.

    Article  PubMed  CAS  Google Scholar 

  80. Varum, S., Momcilovic, O., Castro, C., Ben-Yehudah, A., Ramalho-Santos, J., & Navara, C. S. (2009). Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Research, 3(2–3), 142–156.

    Article  PubMed  CAS  Google Scholar 

  81. Lonergan, T., Brenner, C., & Bavister, B. (2006). Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. Journal of Cellular Physiology, 208(1), 149–153.

    Article  PubMed  CAS  Google Scholar 

  82. San Martin, N., Cervera, A. M., Cordova, C., Covarello, D., McCreath, K. J., & Galvez, B. G. (2011). Mitochondria determine the differentiation potential of cardiac mesoangioblasts. Stem Cells, 29(7), 1064–1074.

    Article  PubMed  CAS  Google Scholar 

  83. Schieke, S. M., Ma, M., Cao, L., McCoy, J. P., Jr., Liu, C., Hensel, N. F., et al. (2008). Mitochondrial metabolism modulates differentiation and teratoma formation capacity in mouse embryonic stem cells. Journal of Biological Chemistry, 283(42), 28506–28512.

    Article  PubMed  CAS  Google Scholar 

  84. Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., et al. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2(2), 151–159.

    Article  PubMed  CAS  Google Scholar 

  85. Sommer, C. A., Sommer, A. G., Longmire, T. A., Christodoulou, C., Thomas, D. D., Gostissa, M., et al. (2010). Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells, 28(1), 64–74.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health, Canadian Institutes of Health Research, American Heart Association, Fondation Leducq, Marriott Foundation, and Mayo Clinic Center for Regenerative Medicine.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Terzic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folmes, C.D.L., Martinez-Fernandez, A., Faustino, R.S. et al. Nuclear Reprogramming with c-Myc Potentiates Glycolytic Capacity of Derived Induced Pluripotent Stem Cells. J. of Cardiovasc. Trans. Res. 6, 10–21 (2013). https://doi.org/10.1007/s12265-012-9431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9431-2

Keywords

Navigation