Skip to main content
Log in

Right and Left Ventricular Diastolic Pressure–Volume Relations: A Comprehensive Review

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Ventricular compliance alterations can affect cardiac performance and adaptations. Moreover, diastolic mechanics are important in assessing both diastolic and systolic function, since any filling impairment can compromise systolic function. A sigmoidal passive filling pressure–volume relationship, developed using chronically instrumented, awake-animal disease models, is clinically adaptable to evaluating diastolic dynamics using subject-specific micromanometric and volumetric data from the entire filling period of any heartbeat(s). This innovative relationship is the global, integrated expression of chamber geometry, wall thickness, and passive myocardial wall properties. Chamber and myocardial compliance curves of both ventricles can be computed by the sigmoidal methodology over the entire filling period and plotted over appropriate filling pressure ranges. Important characteristics of the compliance curves can be examined and compared between the right and the left ventricle and for different physiological and pathological conditions. The sigmoidal paradigm is more accurate and, therefore, a better alternative to the conventional exponential pressure–volume approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, S. J., Truskey, G. A., & Kraus, W. E. (2007). Effect of cyclic stretch on1D-integrin expression and activation of FAK and RhoA. American Journal of Physiology - Cell Physiology, 292, C2057–C2069.

    Article  PubMed  CAS  Google Scholar 

  2. Pasipoularides, A. (2010). Heart's vortex: intracardiac blood flow phenomena. Shelton: People’s Medical Publishing House.

    Google Scholar 

  3. Borlaug, B. A., & Redfield, M. M. (2011). Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation, 123, 2006–2013.

    Article  PubMed  Google Scholar 

  4. Mirsky, I., & Pasipoularides, A. (1990). Clinical assessment of diastolic function. Progress in Cardiovascular Diseases, 32, 291–318.

    Article  PubMed  CAS  Google Scholar 

  5. Hayley, B. D., & Burwash, I. G. (2012). Heart failure with normal left ventricular ejection fraction: role of echocardiography. Current Opinion in Cardiology, 27, 169–180.

    Article  PubMed  Google Scholar 

  6. Zile, M. R., Baicu, C. F., & Gaasch, W. H. (2004). Diastolic heart failure: abnormalities in active relaxation and passive stiffness of the left ventricle. The New England Journal of Medicine, 350, 1953–1959.

    Article  PubMed  CAS  Google Scholar 

  7. Kass, D. A., Bronzwaer, J. G., & Paulus, W. J. (2004). What mechanisms underlie diastolic dysfunction in heart failure? Circulation Research, 94, 1533–1542.

    Article  PubMed  CAS  Google Scholar 

  8. Pasipoularides, A. (1988). On mechanisms of improved ejection fraction by early reperfusion in acute myocardial infarction: myocardial salvage or infarct stiffening? (Editorial). Journal of the American College of Cardiology, 12, 1037–1038.

    Article  PubMed  CAS  Google Scholar 

  9. Redfield, M. M. (2004). Understanding "diastolic" heart failure. The New England Journal of Medicine, 350, 1930–1931.

    Article  PubMed  CAS  Google Scholar 

  10. Segers, V. F., Brutsaert, D. L., & De Keulenaer, G. W. (2012). Pulmonary hypertension and right heart failure in heart failure with preserved left ventricular ejection fraction: pathophysiology and natural history. Current Opinion in Cardiology, 27, 273–280.

    Article  PubMed  Google Scholar 

  11. Pasipoularides A, Mirsky I, Hess OM, Krayenbuehl HP (1980) Incomplete relaxation and passive diastolic muscle properties in man. Circulation, 62, III-205.

    Google Scholar 

  12. Pasipoularides, A., Mirsky, I., Hess, O. M., Grimm, J., & Krayenbuehl, H. P. (1986). Myocardial relaxation and passive diastolic properties in man. Circulation, 74, 991–1001.

    Article  PubMed  CAS  Google Scholar 

  13. Paulus, W. J. (2010). Culprit mechanism(s) for exercise intolerance in heart failure with normal ejection fraction. [Editorial]. Journal of the American College of Cardiology, 56, 864–866.

    Article  PubMed  Google Scholar 

  14. LeWinter, M. M., & Pavelec, R. (1982). Influence of the pericardium on left ventricular end-diastolic pressure-segment relations during early and late stages of experimental chronic volume overload in dogs. Circulation Research, 50, 501–509.

    Article  PubMed  CAS  Google Scholar 

  15. Little, W. C., & Ohara, T. (2011). Left atrial emptying reserve: a mirror of LV diastolic function that predicts prognosis? JACC. Cardiovascular Imaging, 4, 389–391.

    Article  PubMed  Google Scholar 

  16. Dulhunty, A. F. (2006). Excitation-contraction coupling from the 1950s into the new millennium. Clinical and Experimental Pharmacology and Physiology, 33, 763–772.

    Article  PubMed  CAS  Google Scholar 

  17. Pasipoularides, A., Palacios, I., Frist, W., Rosenthal, S., Newell, J. B., & Powell, W. J., Jr. (1985). Contribution of activation-inactivation dynamics to the impairment of relaxation in hypoxic cat papillary muscle. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 248, R54–R62.

    CAS  Google Scholar 

  18. Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 415, 198–205.

    Article  PubMed  CAS  Google Scholar 

  19. Cerra, M. C., & Imbrogno, S. (2012). Phospholamban and cardiac function: a comparative perspective in vertebrates. Acta Physiologica, 205, 9–25.

    Article  PubMed  CAS  Google Scholar 

  20. Pasipoularides, A. D., Shu, M., Shah, A., & Glower, D. D. (2002). Right ventricular diastolic relaxation in conscious dog models of pressure overload, volume overload and ischemia. The Journal of Thoracic and Cardiovascular Surgery, 124, 964–972.

    Article  PubMed  Google Scholar 

  21. Pasipoularides, A. (2011). LV twisting-and-untwisting in HCM: ejection begets filling. Diastolic functional aspects of HCM. [Progress in Cardiology]. American Heart Journal, 162, 798–810.

    Article  PubMed  Google Scholar 

  22. Pasipoularides, A., & Mirsky, I. (1988). Models and concepts of diastolic mechanics: pitfalls in their misapplication. Mathematical and Computer Modelling, 11, 232–234.

    Article  Google Scholar 

  23. Mirsky, I. (1984). Assessment of diastolic function: suggested methods and future considerations. Circulation, 69, 836–841.

    Article  PubMed  CAS  Google Scholar 

  24. Mirsky, I., & Pasipoularides, A. (1980). Elastic properties of normal and hypertrophied cardiac muscle. Federation Proceedings, 39, 156–161.

    PubMed  CAS  Google Scholar 

  25. Gaasch, W. H., & Zile, M. R. (2011). Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry. [Review]. Journal of the American College of Cardiology, 58, 1733–1740.

    Article  PubMed  Google Scholar 

  26. Zile, M. R., & Brutsaert, D. L. (2002). New concepts in diastolic dysfunction and diastolic heart failure. Circulation, 105, 1387–1393.

    Article  PubMed  Google Scholar 

  27. Resar, J. R., Judd, R. M., Halperin, H. R., Chacko, V. P., Weiss, R. G., & Yin, F. C. (1993). Direct evidence that coronary perfusion affects diastolic myocardial mechanical properties in canine heart. Cardiovascular Research, 27, 403–410.

    Article  PubMed  CAS  Google Scholar 

  28. Graham, H. K., Horn, M., & Trafford, A. W. (2008). Extracellular matrix profiles in the progression to heart failure. Acta Physiologica, 194, 3–21.

    Article  PubMed  CAS  Google Scholar 

  29. Craig, W. E., Murgo, J. P., & Pasipoularides, A. (1987). Calculation of the time constant of relaxation. In W. Grossman & B. Lorell (Eds.), Diastolic relaxation of the heart (pp. 125–132). The Hague: Martinus Nijhoff.

    Chapter  Google Scholar 

  30. Condos, W. R. J., Latham, R. D., Hoadley, S. D., & Pasipoularides, A. (1987). Hemodynamics of the Mueller maneuver in man: right and left heart micromanometry and Doppler echocardiography. Circulation, 76, 1020–1028.

    Article  PubMed  Google Scholar 

  31. Williams, L., & Frenneaux, M. (2006). Diastolic ventricular interaction: from physiology to clinical practice. Nature Reviews Cardiology, 3, 368–376.

    Google Scholar 

  32. Belenkie, I., Smith, E. R., & Tyberg, J. V. (2001). Ventricular interaction: from bench to bedside. Annals of Medicine, 33, 236–241.

    Article  PubMed  CAS  Google Scholar 

  33. Boudoulas, H., Weinstein, P. B., Shaver, J. A., & Wooley, C. F. (1987). Atrial septal defect: attenuation of respiratory variation in systolic and diastolic time intervals. Journal of the American College of Cardiology, 9, 53–58.

    Article  PubMed  CAS  Google Scholar 

  34. Gelpi, R. I., Pasipoularides, A., Lader, A. S., Patrick, T. A., Chase, N., Hittinger, L., Shannon, R. P., Bishop, S. P., & Vatner, S. F. (1991). Changes in diastolic cardiac function in developing and stable perinephritic hypertension in conscious dogs. Circulation Research, 68, 555–567.

    Article  PubMed  CAS  Google Scholar 

  35. Komamura, K., Shannon, R. P., Pasipoularides, A., Ihara, T., Lader, A. S., Patrick, T. A., Bishop, S. P., & Vatner, S. F. (1992). Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure. The Journal of Clinical Investigation, 89, 1825–1838.

    Article  PubMed  CAS  Google Scholar 

  36. Pasipoularides, A. (1992). Cardiac mechanics: basic and clinical contemporary research. Annals of Biomedical Engineering, 20, 3–17.

    Article  PubMed  CAS  Google Scholar 

  37. Pasipoularides, A. D., Shu, M., Shah, A., Silvestry, S., & Glower, D. D. (2002). Right ventricular diastolic function in canine models of pressure overload, volume overload and ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 283, H2140–H2150.

    PubMed  CAS  Google Scholar 

  38. Saeki, Y., Sagawa, K., & Suga, H. (1978). Dynamic stiffness of cat heart muscle in Ba2+-induced contracture. Circulation Research, 42, 324–333.

    Article  PubMed  CAS  Google Scholar 

  39. Little, R. C., & Wead, W. B. (1971). Diastolic viscoelastic properties of active and quiescent cardiac muscle. American Journal of Physiology, 221, 1120–1125.

    PubMed  CAS  Google Scholar 

  40. Minelli, R., Panagia, V., & Reggiani, C. (1973). The stiffness of parallel elastic elements in rat papillary muscle. Pflügers Archiv, 339, 79–84.

    Article  PubMed  CAS  Google Scholar 

  41. Paulus, W. J., Vantrimpont, P. J., & Rousseau, M. F. (1992). Diastolic function in nonfilling human left ventricle. Journal of the American College of Cardiology, 20, 1524–1532.

    Article  PubMed  CAS  Google Scholar 

  42. Brutsaert, D. L., & Sys, S. U. (1989). Relaxation and diastole of the heart. Physiological Reviews, 69, 1228–1315.

    PubMed  CAS  Google Scholar 

  43. Pogessi, C., Reggiani, C., Bottinelli, R., Ricciardi, L., & Minelli, R. (1983). Relaxation in atrial and ventricular myocardium: activation decay and different load sensitivity. Basic Research in Cardiology, 78, 256–265.

    Article  Google Scholar 

  44. Lecarpentier, Y. C., Chuck, L. H. S., Housmans, P. R., DeClerck, N. M., & Brutsaert, D. L. (1979). Nature of load dependence of relaxation in cardiac muscle. American Journal of Physiology - Heart and Circulatory Physiology, 237, H455–H460.

    CAS  Google Scholar 

  45. Zhang, W., & Kovacs, S. J. (2008). The diastatic pressure-volume relationship is not the same as the end-diastolic pressure-volume relationship. American Journal of Physiology - Heart and Circulatory Physiology, 294, H2750–H2760.

    Article  PubMed  CAS  Google Scholar 

  46. Borlaug, B. A., Jaber, W. A., Ommen, S. R., Lam, C. S., Redfield, M. M., & Nishimura, R. A. (2011). Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction. Heart, 97, 964–969.

    Article  PubMed  Google Scholar 

  47. Tschöpe, C., & Paulus, W. J. (2009). Doppler echocardiography yields dubious estimates of left ventricular diastolic pressures. Circulation, 120, 810–820.

    Article  PubMed  Google Scholar 

  48. Jaber, W. A., Lam, C. S. P., Meyer, D. M., & Redfield, M. M. (2007). Revisiting methods for assessing and comparing left ventricular diastolic stiffness: impact of relaxation, external forces, hypertrophy, and comparators. American Journal of Physiology - Heart and Circulatory Physiology, 293, H2738–H2746.

    Article  PubMed  CAS  Google Scholar 

  49. Ihara, T., Shannon, R. P., Komamura, K., Pasipoularides, A., Patrick, T., Shen, Y. T., & Vatner, S. F. (1994). Effects of anesthesia and recent surgery on diastolic function. Cardiovascular Research, 28, 325–336.

    Article  PubMed  CAS  Google Scholar 

  50. Straley, C. A. (1993). New model of ventricular filling dynamics: sigmoidal pressure-volume relations. Durham: Duke University (Thesis).

    Google Scholar 

  51. Stefanadis, C., Dernellis, J., Tsiamis, E., Diamantopoulos, L., Michaelides, A., & Toutouzas, P. (2000). Assessment of aortic line of elasticity using polynomial regression analysis. Circulation, 101, 1819–1825.

    Article  PubMed  CAS  Google Scholar 

  52. Pasipoularides, A. (1990). Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. [Review]. Journal of the American College of Cardiology, 15, 859–882.

    Article  PubMed  CAS  Google Scholar 

  53. Pasipoularides, A., Shu, M., Womack, M. S., Shah, A., von Ramm, O., & Glower, D. D. (2003). RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations. American Journal of Physiology - Heart and Circulatory Physiology, 284, H56–H65.

    PubMed  CAS  Google Scholar 

  54. Gibbons Kroeker, C. A., Adeeb, S., Tyberg, J. V., & Shrive, N. G. (2006). A 2D FE model of the heart demonstrates the role of the pericardium in ventricular deformation. American Journal of Physiology - Heart and Circulatory Physiology, 291, H2229–H2236.

    Article  PubMed  Google Scholar 

  55. Heerman, J. R., Segers, P., Roosens, C. D., Gasthuys, F., Verdonck, P. R., & Poelaert, J. I. (2005). Echocardiographic assessment of aortic elastic properties with automated border detection in an ICU: in vivo application of the arctangent Langewouters model. American Journal of Physiology - Heart and Circulatory Physiology, 288, H2504–H2511.

    Article  PubMed  CAS  Google Scholar 

  56. Pasipoularides, A., Uppal, R., Straley, C. A., Craig, D., Hampton, T. G., Shim, Y., Glower, D. D., & Smith, P. K. (1993). Left-ventricular filling dynamics: sigmoidal pressure-volume relations. Circulation, 88, I57.

    Google Scholar 

  57. Pasipoularides, A. (2011). Fluid dynamic aspects of ejection in hypertrophic cardiomyopathy. [Review]. Hellenic Journal of Cardiology, 52, 416–426.

    PubMed  Google Scholar 

  58. Grose, R., Maskin, C., Spindola-Franco, H., & Yipintsoi, T. (1981). Production of left ventricular cavitary obliteration in normal man. Circulation, 64, 448–455.

    Article  PubMed  CAS  Google Scholar 

  59. Pasipoularides, A. (2012). Optimal hematocrit: a Procrustean bed for maximum oxygen transport rate? [Invited Editorial]. Journal of Applied Physiology, 113, 353–354.

    Article  PubMed  Google Scholar 

  60. Discher, D. E., Janmey, P. A., & Wang, Y.-L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310, 1139–1143.

    Article  PubMed  CAS  Google Scholar 

  61. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.

    Article  PubMed  CAS  Google Scholar 

  62. Karantalis, V., Balkan, W., Schulman, I. H., Hatzistergos, K. E., & Hare, J. M. (2012). Cell-based therapy for prevention and reversal of myocardial remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 303, H256–H270.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research support, for work in the author’s Laboratory surveyed in this Review, was provided by the National Heart, Lung, and Blood Institute [grant number R01 NIH 50446]; the National Science Foundation [grant number CDR 8622201]; and the North Carolina Supercomputing Center and Cray Research.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ares Pasipoularides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasipoularides, A. Right and Left Ventricular Diastolic Pressure–Volume Relations: A Comprehensive Review. J. of Cardiovasc. Trans. Res. 6, 239–252 (2013). https://doi.org/10.1007/s12265-012-9424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9424-1

Keywords

Navigation