Skip to main content

Advertisement

Log in

Endothelial Dysfunction and Cardiac Allograft Vasculopathy

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac allograft vasculopathy remains a major challenge to long-term survival after heart transplantation. Endothelial injury and dysfunction, as a result of multifactorial immunologic and nonimmunologic insults in the donor and the recipient, are prevalent early after transplant and may be precursors to overt cardiac allograft vasculopathy. Current strategies for managing cardiac allograft vasculopathy, however, rely on the identification and treatment of established disease. Improved understanding of mechanisms leading to endothelial dysfunction in heart transplant recipients may provide the foundation for the development of sensitive screening techniques and preventive therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACE-I:

Angiotensin converting enzyme inhibitor

ARB:

Angiotensin receptor blocker

cGMP:

Cyclic guanosine monophosphate

eNOS:

Endothelial nitric oxide synthase

GTP:

Guanosine triphosphate

iNOS:

Inducible nitric oxide synthase

NO:

Nitric oxide

PDE-5:

Phosphodiesterase type 5

References

  1. Topkara, V. K., Dang, N. C., John, R., Cheema, F. H., Barbato, R., Cavallo, M., et al. (2005). A decade experience of cardiac retransplantation in adult recipients. The Journal of Heart and Lung Transplantation, 24, 1745–1750.

    Google Scholar 

  2. Aranda, J. M., Jr., & Hill, J. (2000). Cardiac transplant vasculopathy. Chest, 118, 1792–1800.

    Google Scholar 

  3. Rickenbacher, P. R., Pinto, F. J., Chenzbraun, A., Botas, J., Lewis, N. P., Alderman, E. L., et al. (1995). Incidence and severity of transplant coronary artery disease early and up to 15 years after transplantation as detected by intravascular ultrasound. Journal of the American College of Cardiology, 25, 171–177.

    CAS  Google Scholar 

  4. Stehlik, J., Edwards, L. B., Kucheryavaya, A. Y., Aurora, P., Christie, J. D., Kirk, R., et al. (2010). The registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult heart transplant report—2010. The Journal of Heart and Lung Transplantation, 29, 1089–1103.

    Google Scholar 

  5. Stehlik, J., Edwards, L. B., Kucheryavaya, A. Y., Benden, C., Christie, J. D., Dobbels, F., et al. (2011). The registry of the international society for heart and lung transplantation: twenty-eighth adult heart transplant report–2011. The Journal of Heart and Lung Transplantation, 30, 1078–1094.

    Google Scholar 

  6. Rahmani, M., Cruz, R., Granville, D., & McManus, B. (2006). Allograft vasculopathy versus atherosclerosis. Circulation Research, 99, 801–815.

    CAS  Google Scholar 

  7. Furchgott, R., & Zawadzki, J. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373–376.

    CAS  Google Scholar 

  8. Verma, S., Buchanan, M. R., & Anderson, T. J. (2003). Endothelial function testing as a biomarker of vascular disease. Circulation, 108, 2054–2059.

    Google Scholar 

  9. Drexler, H., Fischell, T. A., Pinto, F. J., Chenzbraun, A., Botas, J., Cooke, J. P., et al. (1994). Effect of l-arginine on coronary endothelial function in cardiac transplant recipients. Relation to vessel wall morphology. Circulation, 89, 1615–1623.

    CAS  Google Scholar 

  10. Tiefenbacher, C. P., & Kreuzer, J. (2003). Nitric oxide-mediated endothelial dysfunction—is there need to treat? Current Vascular Pharmacology, 1, 123–133.

    CAS  Google Scholar 

  11. Bahlmann, F., DeGroot, K., Duckert, T., Niemczyk, E., Bahlmann, E., Boehm, S., et al. (2003). Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney International, 64, 1648–1652.

    CAS  Google Scholar 

  12. Medawar, P. B. (1965). Transplantation of tissues and organs: introduction. British Medical Bulletin, 21, 97–99.

    Google Scholar 

  13. Ross, R. (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362, 801–809.

    CAS  Google Scholar 

  14. Minami, E., Laflamme, M. A., Saffitz, J. E., & Murry, C. E. (2005). Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart. Circulation, 112, 2951–2958.

    Google Scholar 

  15. Kapessidou, Y., Habran, C., Buonocore, S., Flamand, V., Barvais, L., Goldman, M., et al. (2006). The replacement of graft endothelium by recipient-type cells conditions allograft rejection mediated by indirect pathway cd4+ t cells. Transplantation, 82, 582–591.

    Google Scholar 

  16. O’Connell, J. B., Renlund, D. G., Bristow, M. R., & Hammond, E. H. (1991). Detection of allograft endothelial cells of recipient origin following abo-compatible, nonidentical cardiac transplantation. Transplantation, 51, 438–442.

    Google Scholar 

  17. Glaser, R., Lu, M. M., Narula, N., & Epstein, J. A. (2002). Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation, 106, 17–19.

    Google Scholar 

  18. Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., et al. (2002). Chimerism of the transplanted heart. The New England Journal of Medicine, 346, 5–15.

    Google Scholar 

  19. Simper, D., Wang, S., Deb, A., Holmes, D., McGregor, C., Frantz, R., et al. (2003). Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis. Circulation, 108, 143–149.

    Google Scholar 

  20. Hillebrands, J. L., Klatter, F. A., van den Hurk, B. M. H., Popa, E. R., Nieuwenhuis, P., & Rozing, J. (2001). Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis. Journal of Clinical Investigation, 107, 1411–1422.

    CAS  Google Scholar 

  21. Hu, Y., Davison, F., Ludewig, B., Erdel, M., Mayr, M., Url, M., et al. (2002). Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation, 106, 1834–1839.

    Google Scholar 

  22. Sinclair, R. (1972). Origin of endothelium in human renal allografts. British Medical Journal, 4, 15–16.

    CAS  Google Scholar 

  23. Lagaaij, E. L., Cramer-Knijnenburg, G. F., van Kemenade, F. J., van Es, L. A., Bruijn, J. A., & van Krieken, J. H. J. M. (2001). Endothelial cell chimerism after renal transplantation and vascular rejection. The Lancet, 357, 33–37.

    CAS  Google Scholar 

  24. Atkinson, C., Horsley, J., Rhind-Tutt, S., Charman, S., Phillpotts, C. J., Wallwork, J., et al. (2004). Neointimal smooth muscle cells in human cardiac allograft coronary artery vasculopathy are of donor origin. The Journal of Heart and Lung Transplantation, 23, 427–435.

    Google Scholar 

  25. Hruban, R., Long, P., Perlman, E., Hutchins, G., Baumgartner, W., Baughman, K., et al. (1993). Fluorescence in situ hybridization for the y-chromosome can be used to detect cells of recipient origin in allografted hearts following cardiac transplantation. The American Journal of Pathology, 142, 975.

    CAS  Google Scholar 

  26. Shimizu, K., Sugiyama, S., Aikawa, M., Fukumoto, Y., Rabkin, E., Libby, P., et al. (2001). Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy. Nature Medicine, 7, 738–741.

    CAS  Google Scholar 

  27. Li, J., Han, X., Jiang, J., Zhong, R., Williams, G. M., Pickering, J. G., et al. (2001). Vascular smooth muscle cells of recipient origin mediate intimal expansion after aortic allotransplantation in mice. The American Journal of Pathology, 158, 1943.

    CAS  Google Scholar 

  28. Valantine, H. A. (2003). Cardiac allograft vasculopathy: central role of endothelial injury leading to transplant "atheroma". Transplantation, 76, 891–899.

    CAS  Google Scholar 

  29. Caforio, A. L. P., Tona, F., Fortina, A. B., Angelini, A., Piaserico, S., Gambino, A., et al. (2004). Immune and nonimmune predictors of cardiac allograft vasculopathy onset and severity: multivariate risk factor analysis and role of immunosuppression. American Journal of Transplantation, 4, 962–970.

    Google Scholar 

  30. Nagji, A. S., Hranjec, T., Swenson, B. R., Kern, J. A., Bergin, J. D., Jones, D. R., et al. (2010). Donor age is associated with chronic allograft vasculopathy after adult heart transplantation: Implications for donor allocation. The Annals of Thoracic Surgery, 90, 168–175.

    Google Scholar 

  31. Pratschke, J., Neuhaus, P., & Tullius, S. (2005). What can be learned from brain–death models? Transplant International, 18, 15–21.

    CAS  Google Scholar 

  32. Rogers, N., & Lechler, R. (2001). Allorecognition. American Journal of Transplantation, 1, 97–102.

    CAS  Google Scholar 

  33. Adams, D., Russell, M., Hancock, W., Sayegh, M., Wyner, L., & Karnovsky, M. (1993). Chronic rejection in experimental cardiac transplantation: studies in the lewis-f344 model. Immunology Reviews, 134, 5–19.

    CAS  Google Scholar 

  34. Ciubotariu, R., Colovai, A., Pennesi, G., Liu, Z., Smith, D., Berlocco, P., et al. (1998). Specific suppression of human cd4+ th cell responses to pig mhc antigens by cd8+ cd28− regulatory t cells. The Journal of Immunology, 161, 5193–5202.

    CAS  Google Scholar 

  35. Salomon, R. N., Hughes, C., Schoen, F., Payne, D., Pober, J., & Libby, P. (1991). Human coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to activated graft endothelial cells. The American Journal of Pathology, 138, 791.

    CAS  Google Scholar 

  36. Zhang, X., Kelemen, S., & Eisen, H. (2000). Quantitative assessment of cell adhesion molecule gene expression in endomyocardial biopsy specimens from cardiac transplant recipients using competitive polymerase chain reaction. Transplantation, 70, 505–513.

    CAS  Google Scholar 

  37. Nabel, E., Shum, L., Pompili, V., Yang, Z., San, H., Shu, H., et al. (1993). Direct transfer of transforming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 90, 10759–10763.

    CAS  Google Scholar 

  38. Weis, M., & Cooke, J. (2003). Cardiac allograft vasculopathy and dysregulation of the no synthase pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 567–575.

    CAS  Google Scholar 

  39. Prasad, A., Zhu, J., Halcox, J. P. J., Waclawiw, M. A., Epstein, S. E., & Quyyumi, A. A. (2002). Predisposition to atherosclerosis by infections. Circulation, 106, 184–190.

    Google Scholar 

  40. Valantine, H. A. (1999). Role of cmv in transplant coronary artery disease and survival after heart transplantation. Transplant Infectious Disease, 1(Suppl 1), 25–30.

    Google Scholar 

  41. Speir, E., Yu, Z. X., Ferrans, V. J., Huang, E. S., & Epstein, S. E. (1998). Aspirin attenuates cytomegalovirus infectivity and gene expression mediated by cyclooxygenase-2 in coronary artery smooth muscle cells. Circulation Research, 83, 210–216.

    CAS  Google Scholar 

  42. van Dorp, W., Jonges, E., Bruggeman, C., Daha, M., van Es, L., & van Der Woude, F. (1989). Direct induction of mhc class I, but not class II, expression on endothelial cells by cytomegalovirus infection. Transplantation, 48, 469–472.

    Google Scholar 

  43. Koskinen, P. (1993). The association of the induction of vascular cell adhesion molecule-1 with cytomegalovirus antigenemia in human heart allografts. Transplantation, 56, 1103–1108.

    CAS  Google Scholar 

  44. Hosenpud, J., Chou, S., & Wagner, C. (1991). Cytomegalovirus-induced regulation of major histocompatibility complex class i antigen expression in human aortic smooth muscle cells. Transplantation, 52, 896–903.

    CAS  Google Scholar 

  45. Streblow, D., Kreklywich, C., Yin, Q., De La Melena, V., Corless, C., Smith, P., et al. (2003). Cytomegalovirus-mediated upregulation of chemokine expression correlates with the acceleration of chronic rejection in rat heart transplants. Journal of Virology, 77, 2182–2194.

    CAS  Google Scholar 

  46. Weis, M., Kledal, T. N., Lin, K. Y., Panchal, S. N., Gao, S. Z., Valantine, H. A., et al. (2004). Cytomegalovirus infection impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine in transplant arteriosclerosis. Circulation, 109, 500–505.

    CAS  Google Scholar 

  47. Simmonds, J., Fenton, M., Dewar, C., Ellins, E., Storry, C., Cubitt, D., et al. (2008). Endothelial dysfunction and cytomegalovirus replication in pediatric heart transplantation. Circulation, 117, 2657–2661.

    Google Scholar 

  48. Petrakopoulou, P., Kübrich, M., Pehlivanli, S., Meiser, B., Reichart, B., von Scheidt, W., et al. (2004). Cytomegalovirus infection in heart transplant recipients is associated with impaired endothelial function. Circulation, 110, II-207–II-212.

    Google Scholar 

  49. Grattan, M., Moreno-Cabral, C., Starnes, V., Oyer, P., Stinson, E., & Shumway, N. (1989). Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA: The Journal of the American Medical Association, 261, 3561–3566.

    Google Scholar 

  50. Potena, L., & Valantine, H. A. (2007). Cytomegalovirus-associated allograft rejection in heart transplant patients. Current Opinion in Infectious Diseases, 20, 425–431.

    Google Scholar 

  51. Potena, L., Grigioni, F., Ortolani, P., Magnani, G., Marrozzini, C., Falchetti, E., et al. (2003). Relevance of cytomegalovirus infection and coronary-artery remodeling in the first year after heart transplantation: a prospective three-dimensional intravascular ultrasound study. Transplantation, 75, 839.

    Google Scholar 

  52. Zakliczynski, M., Boguslawska, J., Wojniak, E., Zakliczynska, H., Ciesla, D., Nozynski, J., et al. (2011). In the era of the universal use of statins dyslipidemia’s are still common in heart transplant recipients: a cross-sectional study. Transplantation Proceedings, 43(8), 3071–3073.

    CAS  Google Scholar 

  53. Stehlik, J., Edwards, L. B., Kucheryavaya, A. Y., Benden, C., Christie, J. D., Dobbels, F., et al. (2011). The registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult heart transplant report—2011. The Journal of Heart and Lung Transplantation, 30, 10781094.

    Google Scholar 

  54. Hilbrands, L. B., Demacker, P., Hoitsma, A. J., Stalenhoef, A., & Koene, R. (1995). The effects of cyclosporine and prednisone on serum lipid and (apo) lipoprotein levels in renal transplant recipients. Journal of the American Society of Nephrology, 5, 2073–2081.

    CAS  Google Scholar 

  55. Kasiske, B., Tortorice, K., Heim-Duthoy, K., Awni, W., & Rao, K. (1991). The adverse impact of cyclosporine on serum lipids in renal transplant recipients. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 17, 700.

    CAS  Google Scholar 

  56. Lázaro, I., Bonet, L. A., López, J. M., Lacuesta, E. S., Martínez-Dolz, L., Ramón-Llín, J. A., et al. (2008). Influence of traditional cardiovascular risk factors in the recipient on the development of cardiac allograft vasculopathy after heart transplantation. Transplantation Proceedings, 40(9), 3056–3057.

    Google Scholar 

  57. Escobar, A., Ventura, H. O., Stapleton, D. D., Mehra, M. R., Ramee, S. R., Collins, T. J., et al. (1994). Cardiac allograft vasculopathy assessed by intravascular ultrasonography and nonimmunologic risk factors. The American Journal of Cardiology, 74, 1042–1046.

    CAS  Google Scholar 

  58. Eich, D., Thompson, J., Ko, D., Hastillo, A., Lower, R., Katz, S., et al. (1991). Hypercholesterolemia in long-term survivors of heart transplantation: an early marker of accelerated coronary artery disease. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation., 10, 45.

    CAS  Google Scholar 

  59. Kobashigawa, J. A., Moriguchi, J. D., Laks, H., Wener, L., Hage, A., Hamilton, M. A., et al. (2005). Ten-year follow-up of a randomized trial of pravastatin in heart transplant patients. The Journal of Heart and Lung Transplantation, 24, 1736–1740.

    Google Scholar 

  60. Mehra M, Raval N. (2004). Metaanalysis of statins and survival in de novo cardiac transplantation. Transplantation Proceedings, 36, 1539–1541

    Google Scholar 

  61. Mehra, M. R., Uber, P. A., Vivekananthan, K., Solis, S., Scott, R. L., Park, M. H., et al. (2002). Comparative beneficial effects of simvastatin and pravastatin on cardiac allograft rejection and survival. Journal of the American College of Cardiology, 40, 1609–1614.

    CAS  Google Scholar 

  62. Wenke, K., Meiser, B., Thiery, J., Nagel, D., von Scheidt, W., Krobot, K., et al. (2003). Simvastatin initiated early after heart transplantation: 8-year prospective experience. Circulation, 107, 93–97.

    CAS  Google Scholar 

  63. Weis, M., Pehlivanli, S., Meiser, B., & von Scheidt, W. (2001). Simvastatin treatment is associated with improvement in coronary endothelial function and decreased cytokine activation in patients after heart transplantation. Journal of the American College of Cardiology, 38, 814–818.

    CAS  Google Scholar 

  64. Shimizu, K., Aikawa, M., Takayama, K., Libby, P., & Mitchell, R. N. (2003). Direct anti-inflammatory mechanisms contribute to attenuation of experimental allograft arteriosclerosis by statins. Circulation, 108, 2113–2120.

    CAS  Google Scholar 

  65. Holm, T., Andreassen, A. K., Ueland, T., Kjekshus, J., Froland, S. S., Kjekshus, E., et al. (2001). Effect of pravastatin on plasma markers of inflammation and peripheral endothelial function in male heart transplant recipients. The American Journal of Cardiology, 87, 815–818. A819.

    CAS  Google Scholar 

  66. Nieuwenhuis, M. G., & Kirkels, J. H. (2001). Predictability and other aspects of post-transplant diabetes mellitus in heart transplant recipients. The Journal of Heart and Lung Transplantation, 20, 703–708.

    CAS  Google Scholar 

  67. Depczynski, B., Daly, B., Campbell, L., Chisholm, D., & Keogh, A. (2000). Predicting the occurrence of diabetes mellitus in recipients of heart transplants. Diabetic Medicine, 17, 15–19.

    CAS  Google Scholar 

  68. Raichlin, E. R., McConnell, J. P., Lerman, A., Kremers, W. K., Edwards, B. S., Kushwaha, S. S., et al. (2007). Systemic inflammation and metabolic syndrome in cardiac allograft vasculopathy. The Journal of Heart and Lung Transplantation, 26, 826–833.

    Google Scholar 

  69. Hirohata, A., Nakamura, M., Waseda, K., Honda, Y., Lee, D. P., Vagelos, R. H., et al. (2007). Changes in coronary anatomy and physiology after heart transplantation. The American Journal of Cardiology, 99, 1603–1607.

    Google Scholar 

  70. Hollenberg, S. M., Klein, L. W., Parrillo, J. E., Scherer, M., Burns, D., Tamburro, P., et al. (2001). Coronary endothelial dysfunction after heart transplantation predicts allograft vasculopathy and cardiac death. Circulation, 104, 3091–3096.

    CAS  Google Scholar 

  71. Fish, R. D., Nabel, E. G., Selwyn, A. P., Ludmer, P. L., Mudge, G. H., Kirshenbaum, J. M., et al. (1988). Responses of coronary arteries of cardiac transplant patients to acetylcholine. The Journal of Clinical Investigation, 81, 21–31.

    CAS  Google Scholar 

  72. Davis, S. F., Yeung, A. C., Meredith, I. T., Charbonneau, F., Ganz, P., Selwyn, A. P., et al. (1996). Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant. Circulation, 93, 457–462.

    CAS  Google Scholar 

  73. Hollenberg, S. M., Klein, L. W., Parrillo, J. E., Scherer, M., Burns, D., Tamburro, P., et al. (2004). Changes in coronary endothelial function predict progression of allograft vasculopathy after heart transplantation. The Journal of Heart and Lung Transplantation, 23, 265–271.

    Google Scholar 

  74. Weis, M., Hartmann, A., Olbrich, H. G., Hör, G., & Zeiher, A. M. (1998). Prognostic significance of coronary flow reserve on left ventricular ejection fraction in cardiac transplant recipients. Transplantation, 65, 103.

    CAS  Google Scholar 

  75. Fearon, W. F., Shah, M., Ng, M., Brinton, T., Wilson, A., Tremmel, J. A., et al. (2008). Predictive value of the index of microcirculatory resistance in patients with st-segment elevation myocardial infarction. Journal of the American College of Cardiology, 51, 560–565.

    Google Scholar 

  76. Hillebrands, J. L., Klatter, F. A., van Dijk, W. D., & Rozing, J. (2002). Bone marrow does not contribute substantially to endothelial-cell replacement in transplant arteriosclerosis. Nature Medicine, 8, 194–195.

    Google Scholar 

  77. Costanzo, M. R., Dipchand, A., Starling, R., Anderson, A., Chan, M., Desai, S., et al. (2010). The international society of heart and lung transplantation guidelines for the care of heart transplant recipients. The Journal of Heart and Lung Transplantation, 29, 914–956.

    Google Scholar 

  78. Barbir, M., Lazem, F., Banner, N., Mitchell, A., & Yacoub, M. (1997). The prognostic significance of non-invasive cardiac tests in heart transplant recipients. European Heart Journal, 18, 692–696.

    CAS  Google Scholar 

  79. Barbir, M., Lazem, F., Bowker, T., Ludman, P., Banner, N., Mitchell, A., et al. (1997). Determinants of transplant-related coronary calcium detected by ultrafast computed tomography scanning. The American Journal of Cardiology, 79, 1606–1609.

    CAS  Google Scholar 

  80. Gao, S. Z., Alderman, E., Schroeder, J., Hunt, S., Wiederhold, V., & Stinson, E. (1990). Progressive coronary luminal narrowing after cardiac transplantation. Circulation, 82, IV269.

    CAS  Google Scholar 

  81. St Goar, F., Pinto, F., Alderman, E., Valantine, H., Schroeder, J., Gao, S., et al. (1992). Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation, 85, 979.

    CAS  Google Scholar 

  82. O’Neill, B. J., Pflugfelder, P. W., Singh, N. R., Menkis, A. H., McKenzie, F. N., & Kostuk, W. J. (1989). Frequency of angiographic detection and quantitative assessment of coronary arterial disease one and three years after cardiac transplantation. The American Journal of Cardiology, 63, 1221–1226.

    Google Scholar 

  83. Kobashigawa, J. A., Tobis, J. M., Starling, R. C., Tuzcu, E. M., Smith, A. L., Valantine, H. A., et al. (2005). Multicenter intravascular ultrasound validation study among heart transplant recipients: outcomes after five years. Journal of the American College of Cardiology, 45, 1532–1537.

    Google Scholar 

  84. Tuzcu, E. M., Kapadia, S. R., Sachar, R., Ziada, K. M., Crowe, T. D., Feng, J., et al. (2005). Intravascular ultrasound evidence of angiographically silent progression in coronary atherosclerosis predicts long-term morbidity and mortality after cardiac transplantation. Journal of the American College of Cardiology, 45, 1538–1542.

    Google Scholar 

  85. Jang, I. K., Bouma, B. E., Kang, D. H., Park, S. J., Park, S. W., Seung, K. B., et al. (2002). Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. Journal of the American College of Cardiology, 39, 604–609.

    Google Scholar 

  86. Garrido IP, García-Lara J, Pinar E, Pastor-Pérez F, Sánchez-Mas J, Valdés-Chavarri M, Pascual-Figal DA (2012) Optical coherence tomography and highly sensitivity troponin t for evaluating cardiac allograft vasculopathy. The American Journal of Cardiology, 110, 655–661

    Google Scholar 

  87. Mehra, M. R., Crespo-Leiro, M. G., Dipchand, A., Ensminger, S. M., Hiemann, N. E., Kobashigawa, J. A., et al. (2010). International society for heart and lung transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy—2010. The Journal of Heart and Lung Transplantation, 29, 717–727.

    Google Scholar 

  88. Gullestad, L., Simonsen, S., Ueland, T., Holm, T., Aass, H., Andreassen, A. K., et al. (1999). Possible role of proinflammatory cytokines in heart allograft coronary artery disease. The American Journal of Cardiology, 84, 999–1003.

    CAS  Google Scholar 

  89. Spes, C. H., Klauss, V., Rieber, J., Schnaack, S. D., Tammen, A. R., Uberfuhr, P., et al. (1999). Functional and morphological findings in heart transplant recipients with a normal coronary angiogram: an analysis by dobutamine stress echocardiography, intracoronary doppler and intravascular ultrasound. The Journal of Heart and Lung Transplantation, 18, 391–398.

    CAS  Google Scholar 

  90. Bacal, F., Moreira, L., Souza, G., Rodrigues, A. C., Fiorelli, A., Stolf, N., et al. (2004). Dobutamine stress echocardiography predicts cardiac events or death in asymptomatic patients long-term after heart transplantation: 4-year prospective evaluation. The Journal of Heart and Lung Transplantation, 23, 1238–1244.

    Google Scholar 

  91. Eroglu, E., D’hooge, J., Sutherland, G. R., Marciniak, A., Thijs, D., Droogne, W., et al. (2008). Quantitative dobutamine stress echocardiography for the early detection of cardiac allograft vasculopathy in heart transplant recipients. Heart, 94, e3.

    CAS  Google Scholar 

  92. Gregory, S. A., Ferencik, M., Achenbach, S., Yeh, R. W., Hoffmann, U., Inglessis, I., et al. (2006). Comparison of sixty-four-slice multidetector computed tomographic coronary angiography to coronary angiography with intravascular ultrasound for the detection of transplant vasculopathy. The American Journal of Cardiology, 98, 877–884.

    Google Scholar 

  93. Sigurdsson, G., Carrascosa, P., Yamani, M. H., Greenberg, N. L., Perrone, S., Lev, G., et al. (2006). Detection of transplant coronary artery disease using multidetector computed tomography with adaptative multisegment reconstruction. Journal of the American College of Cardiology, 48, 772.

    Google Scholar 

  94. Muehling, O. M., Wilke, N. M., Panse, P., Jerosch-Herold, M., Wilson, B. V., Wilson, R. F., et al. (2003). Reduced myocardial perfusion reserve and transmural perfusiongradient in heart transplant arteriopathyassessed by magnetic resonance imaging. Journal of the American College of Cardiology, 42, 1054.

    Google Scholar 

  95. Colvin-Adams, M., Petros, S., Raveendran, G., Missov, E., Medina, E., & Wilson, R. (2011). Qualitative perfusion cardiac magnetic resonance imaging lacks sensitivity in detecting cardiac allograft vasculopathy. Cardiology Research., 2, 282–287.

    Google Scholar 

  96. Schnetzler, B., Drobinski, G., Dorent, R., Camproux, A. C., Ghossoub, J. J., Thomas, D., et al. (2000). The role of percutaneous transluminal coronary angioplasty in heart transplant recipients. The Journal of Heart and Lung Transplantation, 19, 557–565.

    CAS  Google Scholar 

  97. Treasure, C. B., Klein, J. L., Weintraub, W. S., Talley, J. D., Stillabower, M. E., Kosinski, A. S., et al. (1995). Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. The New England Journal of Medicine, 332, 481–487.

    CAS  Google Scholar 

  98. Anderson, T. J., Uehata, A., Gerhard, M. D., Meredith, I. T., Knab, S., Delagrange, D., et al. (1995). Close relation of endothelial function in the human coronary and peripheral circulations. Journal of the American College of Cardiology, 26, 1235–1241.

    CAS  Google Scholar 

  99. Blum, A., & Shamburek, R. (2009). The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis, 203, 325–330.

    CAS  Google Scholar 

  100. Laufs, U., La Fata, V., Plutzky, J., & Liao, J. K. (1998). Upregulation of endothelial nitric oxide synthase by hmg coa reductase inhibitors. Circulation, 97, 1129–1135.

    CAS  Google Scholar 

  101. Valantine, H. (2005). Prevention of cardiac allograft vasculopathy with certican (everolimus): the Stanford University experience within the certican phase III clinical trial. The Journal of Heart and Lung Transplantation, 24, S191–S195. discussion S210-191.

    Google Scholar 

  102. Eisen, H. J., Tuzcu, E. M., Dorent, R., Kobashigawa, J., Mancini, D., Valantine-von Kaeppler, H. A., et al. (2003). Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. The New England Journal of Medicine, 349, 847–858.

    CAS  Google Scholar 

  103. Mancini, D., Pinney, S., Burkhoff, D., LaManca, J., Itescu, S., Burke, E., et al. (2003). Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation, 108, 48–53.

    CAS  Google Scholar 

  104. Raichlin, E., Prasad, A., Kremers, W. K., Edwards, B. S., Rihal, C. S., Lerman, A., et al. (2009). Sirolimus as primary immunosuppression is associated with improved coronary vasomotor function compared with calcineurin inhibitors in stable cardiac transplant recipients. European Heart Journal, 30, 1356.

    CAS  Google Scholar 

  105. Keogh, A., Richardson, M., Ruygrok, P., Spratt, P., Galbraith, A., O’Driscoll, G., et al. (2004). Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation, 110, 2694–2700.

    CAS  Google Scholar 

  106. Kuppahally, S., Al-Khaldi, A., Weisshaar, D., Valantine, H., Oyer, P., Robbins, R., et al. (2006). Wound healing complications with de novo sirolimus versus mycophenolate mofetil–based regimen in cardiac transplant recipients. American Journal of Transplantation, 6, 986–992.

    CAS  Google Scholar 

  107. Aliabadi, A., Pohanka, E., Seebacher, G., Dunkler, D., Kammerstätter, D., Wolner, E., et al. (2008). Development of proteinuria after switch to sirolimus–based immunosuppression in long–term cardiac transplant patients. American Journal of Transplantation, 8, 854–861.

    CAS  Google Scholar 

  108. Manito, N., Kaplinsky, E. J., Bernat, R., Roca, J., Castells, E., Serrano, T., et al. (2004). Fatal interstitial pneumonitis associated with sirolimus therapy in a heart transplant recipient. The Journal of Heart and Lung Transplantation, 23, 780–782.

    Google Scholar 

  109. Bader, F. M., Kfoury, A. G., Gilbert, E. M., Barry, W. H., Humayun, N., Hagan, M. E., et al. (2006). Percutaneous coronary interventions with stents in cardiac transplant recipients. The Journal of Heart and Lung Transplantation, 25, 298–301.

    Google Scholar 

  110. Benza, R. L., Zoghbi, G. J., Tallaj, J., Brown, R., Kirklin, J. K., Hubbard, M., et al. (2004). Palliation of allograft vasculopathy with transluminal angioplasty: a decade of experience. Journal of the American College of Cardiology, 43, 1973.

    Google Scholar 

  111. Patel, V., Radovancevic, B., Springer, W., Frazier, O., Massin, E., Benrey, J., et al. (1997). Revascularization procedures in patients with transplant coronary artery disease1. European Journal of Cardio-Thoracic Surgery, 11, 895–901.

    CAS  Google Scholar 

  112. Halle, A. A., DiSciascio, G., Massin, E. K., Wilson, R. F., Johnson, M. R., Sullivan, H. J., et al. (1995). Coronary angioplasty, atherectomy and bypass surgery in cardiac transplant recipients. Journal of the American College of Cardiology, 26, 120–128.

    Google Scholar 

  113. Musci, M., Loebe, M., Wellnhofer, E., Meyer, R., Pasic, M., Hummel, M., et al. (1998). Coronary angioplasty, bypass surgery, and retransplantation in cardiac transplant patients with graft coronary disease. Thoracic and Cardiovascular Surgeon, 46, 268–274.

    CAS  Google Scholar 

  114. Srivastava, R., Keck, B. M., Bennett, L. E., & Hosenpud, J. D. (2000). The results of cardiac retransplantation: an analysis of the joint international society for heart and lung transplantation/united network for organ sharing thoracic registry. Transplantation, 70, 606.

    CAS  Google Scholar 

  115. Gao, S. Z., Schroeder, J. S., Hunt, S., & Stinson, E. B. (1988). Retransplantation for severe accelerated coronary artery disease in heart transplant recipients. The American Journal of Cardiology, 62, 876–881.

    CAS  Google Scholar 

  116. Yeboah, J., Crouse, J., Hsu, F., Burke, G., & Herrington, D. (2007). Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the cardiovascular health study. Circulation, 115, 2390–2397.

    Google Scholar 

  117. Kuvin, J. T., Patel, A. R., Sliney, K. A., Pandian, N. G., Rand, W. M., Udelson, J. E., et al. (2001). Peripheral vascular endothelial function testing as a noninvasive indicator of coronary artery disease. Journal of the American College of Cardiology, 38, 1843–1849.

    CAS  Google Scholar 

  118. Roig, E., Cuppoletti, A., Masotti, M., Kianco, R., Vallejos, I., Sitges, M., et al. (2009). Assessment of peripheral endothelial-dependent vasodilatation within the first year after heart transplantation. The Journal of Heart and Lung Transplantation, 28, 299–304.

    Google Scholar 

  119. Kubo, S. H., Rector, T. S., Bank, A. J., Tschumperlin, L. K., Raij, L., Brunsvold, N., et al. (1993). Effects of cardiac transplantation on endothelium-dependent dilation of the peripheral vasculature in congestive heart failure. The American Journal of Cardiology, 71, 88–93.

    CAS  Google Scholar 

  120. Patel, A. R., Kuvin, J. T., Pandian, N. G., Smith, J. J., Udelson, J. E., Mendelsohn, M. E., et al. (2001). Heart failure etiology affects peripheral vascular endothelial function after cardiac transplantation. Journal of the American College of Cardiology, 37, 195–200.

    CAS  Google Scholar 

  121. Holm, T., Aukrust, P., Andreassen, A. K., Ueland, T., Brosstad, F., Frøland, S. S., et al. (2000). Peripheral endothelial dysfunction in heart transplant recipients: possible role of proinflammatory cytokines. Clinical Transplantation, 14, 218–225.

    CAS  Google Scholar 

  122. McVeigh, G. E., Burns, D. E., Finkelstein, S. M., McDonald, K. M., Mock, J. E., Feske, W., et al. (1991). Reduced vascular compliance as a marker for essential hypertension. American Journal of Hypertension, 4, 245–251.

    CAS  Google Scholar 

  123. Duprez, D., Jacobs, D. J., Lutsey, P., Bluemke, D., Brumback, L., Polak, J., et al. (2011). Association of small artery elasticity with incident cardiovascular disease in older adults: the multi-ethnic study of atherosclerosis. American Journal of Epidemiology, 174, 528–536.

    Google Scholar 

  124. Duprez, D., Jacobs, D., Jr., Lutsey, P., Herrington, D., Prime, D., Ouyang, P., et al. (2009). Race/ethnic and sex differences in large and small artery elasticity–results of the multi-ethnic study of atherosclerosis (mesa). Ethnicity & Disease, 19, 243.

    Google Scholar 

  125. Baker, J. V., Duprez, D., Rapkin, J., Hullsiek, K. H., Quick, H., Grimm, R., et al. (2009). Untreated hiv infection and large and small artery elasticity. Journal of Acquired Immune Deficiency Syndromes (1999), 52, 25.

    Google Scholar 

  126. Valappil, N. I., Jacobs, D. R., Duprez, D. A., Gross, M. D., Arnett, D. K., & Glasser, S. (2008). Association between endothelial biomarkers and arterial elasticity in young adults: the cardia study. Journal of the American Society of Hypertension, 2, 70–79.

    Google Scholar 

  127. Colvin-Adams, M., Harcourt, N., Sonbol, Y., Raveendran, G., Pritzker, M., & Duprez, D. (2010). Heart transplantation is associated with impaired peripheral artery function and chronic endothelial dysfunction. The Journal of Heart and Lung Transplantation, 29, S74.

    Google Scholar 

  128. Hognestad, A., Endresen, K., Wergeland, R., Stokke, O., Geiran, O., Holm, T., et al. (2003). Plasma C-reactive protein as a marker of cardiac allograft vasculopathy in heart transplant recipients. Journal of the American College of Cardiology, 42, 477–482.

    CAS  Google Scholar 

  129. Andreassen, A. K., Nordoy, I., Simonsen, S., Ueland, T., Muller, F., Froland, S. S., et al. (1998). Levels of circulating adhesion molecules in congestive heart failure and after heart transplantation. The American Journal of Cardiology, 81, 604–608.

    CAS  Google Scholar 

  130. Lin, Y., Weisdorf, D. J., Solovey, A., & Hebbel, R. P. (2000). Origins of circulating endothelial cells and endothelial outgrowth from blood. The Journal of Clinical Investigation, 105, 71–77.

    CAS  Google Scholar 

  131. Gulati, R., Jevremovic, D., Peterson, T. E., Chatterjee, S., Shah, V., Vile, R. G., et al. (2003). Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circulation Research, 93, 1023–1025.

    CAS  Google Scholar 

  132. Ziche, M., & Morbidelli, L. (2000). Nitric oxide and angiogenesis. Journal of Neuro-Oncology, 50, 139–148.

    CAS  Google Scholar 

  133. Morales-Ruiz, M., Fulton, D., Sowa, G., Languino, L., Fujio, Y., Walsh, K., et al. (2000). Vascular endothelial growth factor-stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase akt. Circulation Research, 86, 892–896.

    CAS  Google Scholar 

  134. Aicher, A., Heeschen, C., Mildner-Rihm, C., Urbich, C., Ihling, C., Technau-Ihling, K., et al. (2003). Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature Medicine, 9, 1370–1376.

    CAS  Google Scholar 

  135. Papapetropoulos, A., Garcia-Cardena, G., Madri, J., & Sessa, W. (1997). Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. The Journal of Clinical Investigation, 100, 3131–3139.

    CAS  Google Scholar 

  136. Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. The New England Journal of Medicine, 353, 999–1007.

    CAS  Google Scholar 

  137. Vasa, M., Fichtlscherer, S., Adler, K., Aicher, A., Martin, H., Zeiher, A. M., et al. (2001). Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation, 103, 2885–2890.

    CAS  Google Scholar 

  138. Hill, J., Zalos, G., Halcox, J., Schenke, W., Waclawiw, M., Quyyumi, A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. The New England Journal of Medicine, 348, 593–600.

    Google Scholar 

  139. Thomas, H., Parry, G., Dark, J., Arthur, H., & Keavney, B. (2009). Circulating endothelial progenitor cell numbers are not associated with donor organ age or allograft vasculopathy in cardiac transplant recipients. Atherosclerosis, 202, 612–616.

    CAS  Google Scholar 

  140. Lou, H., Kodama, T., Wang, Y. N., Katz, N., Ramwell, P., & Foegh, M. L. (1996). l-Arginine prevents heart transplant arteriosclerosis by modulating the vascular cell proliferative response to insulin-like growth factor-i and interleukin-6. The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation., 15, 1248.

    CAS  Google Scholar 

  141. Lim, D. S., Mooradian, S. J., Goldberg, C. S., Gomez, C., Crowley, D. C., Rocchini, A. P., et al. (2004). Effect of oral l-arginine on oxidant stress, endothelial dysfunction, and systemic arterial pressure in young cardiac transplant recipients. The American Journal of Cardiology, 94, 828–831.

    CAS  Google Scholar 

  142. Rybalkin, S., Yan, C., Bornfeldt, K., & Beavo, J. (2003). Cyclic gmp phosphodiesterases and regulation of smooth muscle function. Circulation Research, 93, 280–291.

    CAS  Google Scholar 

  143. Hirata, K., Adji, A., Vlachopoulos, C., & O’Rourke, M. (2005). Effect of sildenafil on cardiac performance in patients with heart failure. The American Journal of Cardiology, 96, 1436–1440.

    CAS  Google Scholar 

  144. Galie, N., Ghofrani, H., Torbicki, A., Barst, R., Rubin, L., Badesch, D., et al. (2005). Sildenafil citrate therapy for pulmonary arterial hypertension. The New England Journal of Medicine, 353, 2148–2157.

    CAS  Google Scholar 

  145. Halcox, J., Nour, K., Zalos, G., Mincemoyer, R., Waclawiw, M., Rivera, C., et al. (2002). The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. Journal of the American College of Cardiology, 40, 1232–1240.

    CAS  Google Scholar 

  146. Schofield, R. S., Edwards, D. G., Schuler, B. T., Estrada, J., Aranda, J. M., Pauly, D. F., et al. (2003). Vascular effects of sildenafil in hypertensive cardiac transplant recipients. American Journal of Hypertension, 16, 874–877.

    CAS  Google Scholar 

  147. Yousufuddin, M., Haji, S., Starling, R. C., Tuzcu, E. M., Ratliff, N. B., Cook, D. J., et al. (2004). Cardiac angiotensin ii receptors as predictors of transplant coronary artery disease following heart transplantation. European Heart Journal, 25, 377–385.

    CAS  Google Scholar 

  148. Richter, M. H. C., Ricther, H. R., Olbrich, H. G., & Mohr, F. W. (2003). Two good reasons for an angiotensin–II type 1 receptor blockade with losartan after cadiac transplantation: reduction of incidence and severity of transplant vasculopathy. Transplant International, 16, 26–32.

    CAS  Google Scholar 

  149. Steinhauff, S., Pehlivanli, S., Bakovic-Alt, R., Meiser, B. M., Becker, B. F., von Scheidt, W., et al. (2004). Beneficial effects of quinaprilat on coronary vasomotor function, endothelial oxidative stress, and endothelin activation after human heart transplantation. Transplantation, 77, 1859–1865.

    CAS  Google Scholar 

  150. Hamblin, M., Chang, L., Fan, Y., Zhang, J., & Chen, Y. E. (2009). Ppars and the cardiovascular system. Antioxidants & Redox Signaling, 11, 1415–1452.

    CAS  Google Scholar 

  151. Babaev, V. R., Yancey, P. G., Ryzhov, S. V., Kon, V., Breyer, M. D., Magnuson, M. A., et al. (2005). Conditional knockout of macrophage pparγincreases atherosclerosis in c57bl/6 and low-density lipoprotein receptor-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1647–1653.

    CAS  Google Scholar 

  152. Law, R. E., Meehan, W. P., Xi, X. P., Graf, K., Wuthrich, D. A., Coats, W., et al. (1996). Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. The Journal of Clinical Investigation, 98, 1897.

    CAS  Google Scholar 

  153. Duan, S. Z., Ivashchenko, C. Y., Russell, M. W., Milstone, D. S., & Mortensen, R. M. (2005). Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-γ both induce cardiac hypertrophy in mice. Circulation Research, 97, 372–379.

    CAS  Google Scholar 

  154. Hetzel, J., Balletshofer, B., Rittig, K., Walcher, D., Kratzer, W., Hombach, V., et al. (2005). Rapid effects of rosiglitazone treatment on endothelial function and inflammatory biomarkers. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1804–1809.

    CAS  Google Scholar 

  155. Murakami, K., Tobe, K., Ide, T., Mochizuki, T., Ohashi, M., Akanuma, Y., et al. (1998). A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and PPAR-gamma: effect of PPAR-alpha activation on abnormal lipid metabolism in liver of Zucker fatty rats. Diabetes, 47, 1841–1847.

    CAS  Google Scholar 

  156. Sidhu, J. S., Cowan, D., & Kaski, J. C. (2004). Effects of rosiglitazone on endothelial function in men with coronary artery disease without diabetes mellitus. The American Journal of Cardiology, 94, 151–156.

    CAS  Google Scholar 

  157. Werner, C., Kamani, C. H., Gensch, C., Böhm, M., & Laufs, U. (2007). The peroxisome proliferator-activated receptor-γ agonist pioglitazone increases number and function of endothelial progenitor cells in patients with coronary artery disease and normal glucose tolerance. Diabetes, 56, 2609–2615.

    CAS  Google Scholar 

  158. Dormandy, J. A., Charbonnel, B., Eckland, D. J. A., Erdmann, E., Massi-Benedetti, M., Moules, I. K., et al. (2005). Secondary prevention of macrovascular events in patients with type 2 diabetes in the proactive study (prospective pioglitazone clinical trial in macrovascular events): a randomised controlled trial. The Lancet, 366, 1279–1289.

    CAS  Google Scholar 

  159. Campia, U., Matuskey, L. A., & Panza, J. A. (2006). Peroxisome proliferator-activated receptor-γ activation with pioglitazone improves endothelium-dependent dilation in nondiabetic patients with major cardiovascular risk factors. Circulation, 113, 867–875.

    CAS  Google Scholar 

  160. Hamblin, M., Chang, L., Zhang, H., Yang, K., Zhang, J., & Chen, Y. E. (2011). Vascular smooth muscle cell peroxisome proliferator-activated receptor-γ mediates pioglitazone-reduced vascular lesion formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 352–359.

    CAS  Google Scholar 

  161. Kosuge, H., Haraguchi, G., Koga, N., Maejima, Y., Suzuki, J., & Isobe, M. (2006). Pioglitazone prevents acute and chronic cardiac allograft rejection. Circulation, 113, 2613–2622.

    CAS  Google Scholar 

  162. Kelishadi, S. S., Azimzadeh, A. M., Zhang, T., Stoddard, T., Welty, E., Avon, C., et al. (2010). Preemptive cd20+ b cell depletion attenuates cardiac allograft vasculopathy in cyclosporine-treated monkeys. The Journal of Clinical Investigation, 120, 1275–1284.

    CAS  Google Scholar 

  163. Avery, R. K. (2003). Cardiac-allograft vasculopathy. The New England Journal of Medicine, 349, 829–830.

Download references

Acknowledgments

Special thanks are due to Roderick Adams, MD and Anne Marie Weber-Main, PhD, who critically reviewed and edited article drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Colvin-Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colvin-Adams, M., Harcourt, N. & Duprez, D. Endothelial Dysfunction and Cardiac Allograft Vasculopathy. J. of Cardiovasc. Trans. Res. 6, 263–277 (2013). https://doi.org/10.1007/s12265-012-9414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9414-3

Keywords

Navigation