Skip to main content
Log in

Intravascular Imaging Tools in the Cardiac Catheterization Laboratory: Comprehensive Assessment of Anatomy and Physiology

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Intravascular imaging modalities have an imperative role in contemporary cardiovascular research. Currently, there are several invasive imaging modalities available in the cardiac catheterization laboratory and new technologies are under development. In the current review, we aimed to provide an update on the research applications of contemporary intravascular imaging tools in the cardiac catheterization laboratory. For the purpose of this review, we separately discuss imaging tools for assessment of epicardial disease (fractional flow reserve and hyperemic stenosis resistance), microvascular function (coronary flow reserve, hyperemic microvascular resistance, and index of microcirculatory resistance), endothelial function, atherosclerotic plaque and vascular remodeling (intravascular ultrasound, optical coherence tomography, angioscopy, and near-infrared spectroscopy), and finally the emerging modalities (palpography and wall shear stress profiling).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CFR:

Coronary flow reserve

FFR:

Fractional flow reserve

hMRv :

Hyperemic myocardial resistance index

HSR:

Hyperemic stenosis resistance index

IMR:

Index of microcirculatory resistance

IVUS:

Intravascular ultrasound

NIRS:

Near-infrared spectroscopy

OCT:

Optical coherence tomography

WSS:

Wall shear stress

References

  1. Kern, M. J., & Samady, H. (2010). Current concepts of integrated coronary physiology in the catheterization laboratory. Journal of the American College of Cardiology, 55(3), 173–185. doi:10.1016/j.jacc.2009.06.062.

    Article  PubMed  Google Scholar 

  2. Kern, M. J., Lerman, A., Bech, J. W., De Bruyne, B., Eeckhout, E., Fearon, W. F., et al. (2006). Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American heart association committee on diagnostic and interventional cardiac catheterization, council on clinical cardiology. Circulation, 114(12), 1321–1341. doi:10.1161/circulationaha.106.177276.

    Article  PubMed  Google Scholar 

  3. Lim, M. J., & Kern, M. J. (2006). Coronary pathophysiology in the cardiac catheterization laboratory. Current Problems in Cardiology, 31(8), 493–550. doi:10.1016/j.cpcardiol.2006.04.002.

    Article  PubMed  Google Scholar 

  4. Lerakis, S., Barry, W. L., & Stouffer, G. A. (1999). Use of coronary flow reserve to evaluate the physiologic significance of coronary artery disease. The American Journal of the Medical Sciences, 318(4), 281–285.

    Article  PubMed  CAS  Google Scholar 

  5. Rigo, F., Varga, Z., Di Pede, F., Grassi, G., Turiano, G., Zuin, G., et al. (2004). Early assessment of coronary flow reserve by transthoracic Doppler echocardiography predicts late remodeling in reperfused anterior myocardial infarction. Journal of the American Society of Echocardiography, 17(7), 750–755. doi:10.1016/j.echo.2004.04.023.

    Article  PubMed  Google Scholar 

  6. Chamuleau, S. A., Siebes, M., Meuwissen, M., Koch, K. T., Spaan, J. A., & Piek, J. J. (2003). Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease. American Journal of Physiology. Heart and Circulatory Physiology, 285(5), H2194–H2200. doi:10.1152/ajpheart.01021.2002.

    PubMed  CAS  Google Scholar 

  7. Fearon, W. F., Aarnoudse, W., Pijls, N. H., De Bruyne, B., Balsam, L. B., Cooke, D. T., et al. (2004). Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: experimental validation. Circulation, 109(19), 2269–2272. doi:10.1161/01.cir.0000128669.99355.cb.

    Article  PubMed  Google Scholar 

  8. Fearon, W. F., Shah, M., Ng, M., Brinton, T., Wilson, A., Tremmel, J. A., et al. (2008). Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 51(5), 560–565. doi:10.1016/j.jacc.2007.08.062.

    Article  PubMed  Google Scholar 

  9. Fearon, W. F., Hirohata, A., Nakamura, M., Luikart, H., Lee, D. P., Vagelos, R. H., et al. (2006). Discordant changes in epicardial and microvascular coronary physiology after cardiac transplantation: physiologic investigation for transplant arteriopathy II (PITA II) study. The Journal of Heart and Lung Transplantation, 25(7), 765–771. doi:10.1016/j.healun.2006.03.003.

    Article  PubMed  Google Scholar 

  10. Fearon, W. F., Balsam, L. B., Farouque, H. M., Caffarelli, A. D., Robbins, R. C., Fitzgerald, P. J., et al. (2003). Novel index for invasively assessing the coronary microcirculation. Circulation, 107(25), 3129–3132. doi:10.1161/01.cir.0000080700.98607.d1.

    Article  PubMed  Google Scholar 

  11. Yamada, R., Okura, H., Kume, T., Neishi, Y., Kawamoto, T., Miyamoto, Y., et al. (2010). Target lesion thin-cap fibroatheroma defined by virtual histology intravascular ultrasound affects microvascular injury during percutaneous coronary intervention in patients with angina pectoris. Circulation Journal, 74(8), 1658–1662.

    Article  PubMed  Google Scholar 

  12. McGeoch, R., Watkins, S., Berry, C., Steedman, T., Davie, A., Byrne, J., et al. (2010). The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv, 3(7), 715–722. doi:10.1016/j.jcin.2010.04.009.

    Article  PubMed  Google Scholar 

  13. Pijls, N. H., Van Gelder, B., Van der Voort, P., Peels, K., Bracke, F. A., Bonnier, H. J., et al. (1995). Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation, 92(11), 3183–3193.

    PubMed  CAS  Google Scholar 

  14. McDaniel, M., & Samady, H. (2011). Use of coronary physiology in the catheterization laboratory to guide treatment in patients with coronary artery disease. Current Treatment Options in Cardiovascular Medicine, 13(1), 35–45. doi:10.1007/s11936-010-0102-9.

    Article  PubMed  Google Scholar 

  15. Tonino, P. A., De Bruyne, B., Pijls, N. H., Siebert, U., Ikeno, F., & Van’t Veer, M. (2009). Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. The New England Journal of Medicine, 360(3), 213–224. doi:10.1056/NEJMoa0807611.

    Article  PubMed  CAS  Google Scholar 

  16. Rutz, T., Gloekler, S., de Marchi, S. F., Traupe, T., Meier, P., Eshtehardi, P., et al. (2011). Coronary collateral function in the transplanted heart: propensity score matching with coronary artery disease. Heart, 97(7), 557–63. doi:10.1136/hrt.2010.215137.

    Article  PubMed  Google Scholar 

  17. Traupe, T., Gloekler, S., de Marchi, S. F., Werner, G. S., & Seiler, C. (2010). Assessment of the human coronary collateral circulation. Circulation, 122(12), 1210–1220. doi:10.1161/circulationaha.109.930651.

    Article  PubMed  Google Scholar 

  18. Meier, P., Gloekler, S., Zbinden, R., Beckh, S., de Marchi, S. F., Zbinden, S., et al. (2007). Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation, 116(9), 975–983. doi:10.1161/circulationaha.107.703959.

    Article  PubMed  Google Scholar 

  19. Bech, G. J., Droste, H., Pijls, N. H., De Bruyne, B., Bonnier, J. J., Michels, H. R., et al. (2001). Value of fractional flow reserve in making decisions about bypass surgery for equivocal left main coronary artery disease. Heart, 86(5), 547–552.

    Article  PubMed  CAS  Google Scholar 

  20. Pijls, N. H., van Schaardenburgh, P., Manoharan, G., Boersma, E., Bech, J. W., & van’t Veer, M. (2007). Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. Journal of the American College of Cardiology, 49(21), 2105–2111. doi:10.1016/j.jacc.2007.01.087.

    Article  PubMed  Google Scholar 

  21. Samady, H., McDaniel, M., Veledar, E., De Bruyne, B., Pijls, N. H., Fearon, W. F., et al. (2009). Baseline fractional flow reserve and stent diameter predict optimal post-stent fractional flow reserve and major adverse cardiac events after bare-metal stent deployment. JACC Cardiovasc Interv, 2(4), 357–363. doi:10.1016/j.jcin.2009.01.008.

    Article  PubMed  Google Scholar 

  22. Pijls, N. H., Klauss, V., Siebert, U., Powers, E., Takazawa, K., Fearon, W. F., et al. (2002). Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circulation, 105(25), 2950–2954.

    Article  PubMed  Google Scholar 

  23. Murtagh, B., Higano, S., Lennon, R., Mathew, V., Holmes, D. R., Jr., & Lerman, A. (2003). Role of incremental doses of intracoronary adenosine for fractional flow reserve assessment. American Heart Journal, 146(1), 99–105. doi:10.1016/s0002-8703(03)00120-0.

    Article  PubMed  CAS  Google Scholar 

  24. de Bruyne, B., Bartunek, J., Sys, S. U., Pijls, N. H., Heyndrickx, G. R., & Wijns, W. (1996). Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation, 94(8), 1842–1849.

    PubMed  Google Scholar 

  25. Meuwissen, M., Chamuleau, S. A., Siebes, M., Schotborgh, C. E., Koch, K. T., de Winter, R. J., et al. (2001). Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation, 103(2), 184–187.

    PubMed  CAS  Google Scholar 

  26. Meuwissen, M., Siebes, M., Chamuleau, S. A., van Eck-Smit, B. L., Koch, K. T., de Winter, R. J., et al. (2002). Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation, 106(4), 441–446.

    Article  PubMed  Google Scholar 

  27. Meuwissen, M., Chamuleau, S. A., Siebes, M., de Winter, R. J., Koch, K. T., Dijksman, L. M., et al. (2008). The prognostic value of combined intracoronary pressure and blood flow velocity measurements after deferral of percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 71(3), 291–297. doi:10.1002/ccd.21331.

    Article  PubMed  Google Scholar 

  28. Frick, M., & Weidinger, F. (2007). Endothelial function: a surrogate endpoint in cardiovascular studies? Current Pharmaceutical Design, 13(17), 1741–1750.

    Article  PubMed  CAS  Google Scholar 

  29. Deanfield, J. E., Halcox, J. P., & Rabelink, T. J. (2007). Endothelial function and dysfunction: testing and clinical relevance. Circulation, 115(10), 1285–1295. doi:10.1161/circulationaha.106.652859.

    PubMed  Google Scholar 

  30. Halcox, J. P., Schenke, W. H., Zalos, G., Mincemoyer, R., Prasad, A., Waclawiw, M. A., et al. (2002). Prognostic value of coronary vascular endothelial dysfunction. Circulation, 106(6), 653–658.

    Article  PubMed  Google Scholar 

  31. Ganz, P., & Vita, J. A. (2003). Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation, 108(17), 2049–2053. doi:10.1161/01.cir.0000089507.19675.f9.

    Article  PubMed  Google Scholar 

  32. Quyyumi, A. A. (2003). Prognostic value of endothelial function. The American Journal of Cardiology, 91(12A), 19H–24H.

    Article  PubMed  CAS  Google Scholar 

  33. Widlansky, M. E., Gokce, N., Keaney, J. F., Jr., & Vita, J. A. (2003). The clinical implications of endothelial dysfunction. Journal of the American College of Cardiology, 42(7), 1149–1160.

    Article  PubMed  CAS  Google Scholar 

  34. Lavi, S., Bae, J. H., Rihal, C. S., Prasad, A., Barsness, G. W., Lennon, R. J., et al. (2009). Segmental coronary endothelial dysfunction in patients with minimal atherosclerosis is associated with necrotic core plaques. Heart, 95(18), 1525–1530. doi:10.1136/hrt.2009.166017.

    Article  PubMed  CAS  Google Scholar 

  35. Maehara, A., Mintz, G. S., & Weissman, N. J. (2009). Advances in intravascular imaging. Circ Cardiovasc Interv, 2(5), 482–490. doi:10.1161/circinterventions.109.868398.

    Article  PubMed  Google Scholar 

  36. De Scheerder, I., De Man, F., Herregods, M. C., Wilczek, K., Barrios, L., Raymenants, E., et al. (1994). Intravascular ultrasound versus angiography for measurement of luminal diameters in normal and diseased coronary arteries. American Heart Journal, 127(2), 243–251.

    Article  PubMed  Google Scholar 

  37. Tobis, J., Azarbal, B., & Slavin, L. (2007). Assessment of intermediate severity coronary lesions in the catheterization laboratory. Journal of the American College of Cardiology, 49(8), 839–848. doi:10.1016/j.jacc.2006.10.055.

    Article  PubMed  Google Scholar 

  38. Fischer, J. J., Samady, H., McPherson, J. A., Sarembock, I. J., Powers, E. R., Gimple, L. W., et al. (2002). Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. The American Journal of Cardiology, 90(3), 210–215.

    Article  PubMed  Google Scholar 

  39. Briguori, C., Tobis, J., Nishida, T., Vaghetti, M., Albiero, R., Di Mario, C., et al. (2002). Discrepancy between angiography and intravascular ultrasound when analysing small coronary arteries. European Heart Journal, 23(3), 247–254.

    Article  PubMed  CAS  Google Scholar 

  40. Jensen, L. O., Thayssen, P., Mintz, G. S., Egede, R., Maeng, M., Junker, A., et al. (2008). Comparison of intravascular ultrasound and angiographic assessment of coronary reference segment size in patients with type 2 diabetes mellitus. The American Journal of Cardiology, 101(5), 590–595.

    Article  PubMed  Google Scholar 

  41. Sipahi, I., Nicholls, S. J., & Tuzcu, E. M. (2006). Intravascular ultrasound in the current percutaneous coronary intervention era. Cardiology Clinics, 24(2), 163–173. doi:10.1016/j.ccl.2006.01.003.

    Article  PubMed  Google Scholar 

  42. Briguori, C., Anzuini, A., Airoldi, F., Gimelli, G., Nishida, T., Adamian, M., et al. (2001). Intravascular ultrasound criteria for the assessment of the functional significance of intermediate coronary artery stenoses and comparison with fractional flow reserve. The American Journal of Cardiology, 87(2), 136–141.

    Article  PubMed  CAS  Google Scholar 

  43. Prati, F., Arbustini, E., Labellarte, A., Dal Bello, B., Mallus, M. T., Sommariva, L., et al. (2000). Intravascular ultrasound insights into plaque composition. Zeitschrift für Kardiologie, 89(Suppl 2), 117–123.

    Article  PubMed  Google Scholar 

  44. Nair, A., Kuban, B. D., Tuzcu, E. M., Schoenhagen, P., Nissen, S. E., & Vince, D. G. (2002). Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation, 106(17), 2200–2206.

    Article  PubMed  Google Scholar 

  45. Nair, A., Margolis, M. P., Kuban, B. D., & Vince, D. G. (2007). Automated coronary plaque characterisation with intravascular ultrasound backscatter: ex vivo validation. EuroIntervention, 3(1), 113–120.

    PubMed  Google Scholar 

  46. Nasu, K., Tsuchikane, E., Katoh, O., Vince, D. G., Virmani, R., Surmely, J. F., et al. (2006). Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. Journal of the American College of Cardiology, 47(12), 2405–2412. doi:10.1016/j.jacc.2006.02.044.

    Article  PubMed  Google Scholar 

  47. Garcia-Garcia, H. M., Mintz, G. S., Lerman, A., Vince, D. G., Margolis, M. P., van Es, G. A., et al. (2009). Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. EuroIntervention, 5(2), 177–189.

    Article  PubMed  Google Scholar 

  48. Garcia-Garcia, H. M., Gonzalo, N., Granada, J. F., Regar, E., & Serruys, P. W. (2008). Diagnosis and treatment of coronary vulnerable plaques. Expert Review of Cardiovascular Therapy, 6(2), 209–222. doi:10.1586/14779072.6.2.209.

    Article  PubMed  Google Scholar 

  49. Matter, C. M., Stuber, M., & Nahrendorf, M. (2009). Imaging of the unstable plaque: how far have we got? European Heart Journal, 30(21), 2566–2574. doi:10.1093/eurheartj/ehp419.

    Article  PubMed  Google Scholar 

  50. Bezerra, H. G., Costa, M. A., Guagliumi, G., Rollins, A. M., & Simon, D. I. (2009). Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv, 2(11), 1035–1046. doi:10.1016/j.jcin.2009.06.019.

    Article  PubMed  Google Scholar 

  51. Finn, A. V., Nakano, M., Narula, J., Kolodgie, F. D., & Virmani, R. (2010). Concept of vulnerable/unstable plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(7), 1282–1292. doi:10.1161/atvbaha.108.179739.

    Article  PubMed  CAS  Google Scholar 

  52. Coletta, J., Suzuki, N., Nascimento, B. R., Bezerra, H. G., Rosenthal, N., Guagliumi, G., et al. (2010). Use of optical coherence tomography for accurate characterization of atherosclerosis. Arquivos Brasileiros de Cardiologia, 94(2), 250–254. 268–272, 254–259.

    Article  PubMed  Google Scholar 

  53. Prati, F., Regar, E., Mintz, G. S., Arbustini, E., Di Mario, C., Jang, I. K., et al. (2010). Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. European Heart Journal, 31(4), 401–415. doi:10.1093/eurheartj/ehp433.

    Article  PubMed  Google Scholar 

  54. Regar, E., van Soest, G., Bruining, N., Constantinescu, A. A., van Geuns, R. J., van der Giessen, W., et al. (2010). Optical coherence tomography in patients with acute coronary syndrome. EuroIntervention, 6 Suppl G, G154–G160. doi:10.4244/.

    PubMed  Google Scholar 

  55. Kubo, T., & Akasaka, T. (2008). Recent advances in intracoronary imaging techniques: focus on optical coherence tomography. Expert Review of Medical Devices, 5(6), 691–697. doi:10.1586/17434440.5.6.691.

    Article  PubMed  Google Scholar 

  56. Uchida, Y. (2010). Recent advances in coronary angioscopy. Journal of Cardiology. doi:10.1016/j.jjcc.2010.11.001.

    Google Scholar 

  57. Ueda, Y., Ohtani, T., Shimizu, M., Hirayama, A., & Kodama, K. (2004). Assessment of plaque vulnerability by angioscopic classification of plaque color. American Heart Journal, 148(2), 333–335. doi:10.1016/j.ahj.2004.03.047.

    Article  PubMed  Google Scholar 

  58. Miyamoto, A., Prieto, A. R., Friedl, S. E., Lin, F. C., Muller, J. E., Nesto, R. W., et al. (2004). Atheromatous plaque cap thickness can be determined by quantitative color analysis during angioscopy: implications for identifying the vulnerable plaque. Clinical Cardiology, 27(1), 9–15.

    Article  PubMed  Google Scholar 

  59. Franzen, D., Sechtem, U., & Hopp, H. W. (1998). Comparison of angioscopic, intravascular ultrasonic, and angiographic detection of thrombus in coronary stenosis. The American Journal of Cardiology, 82(10), 1273–1275. A1279.

    Article  PubMed  CAS  Google Scholar 

  60. Ohsawa, H., Uchida, Y., Fujimori, Y., Hirose, J., Noike, H., Tokuhiro, K., et al. (2002). Angioscopic evaluation of stabilizing effects of an antilipemic agent, bezafibrate, on coronary plaques in patients with coronary artery disease: a multicenter prospective study. Japanese Heart Journal, 43(4), 319–331.

    Article  PubMed  CAS  Google Scholar 

  61. Alfonso, F., Hernandez, R., Goicolea, J., Silva, J. C., Segovia, J., Banuelos, C., et al. (1994). Angiographic deterioration of the previously dilated coronary segment induced by angioscopic examination. The American Journal of Cardiology, 74(6), 604–606.

    Article  PubMed  CAS  Google Scholar 

  62. Schaar, J. A., Mastik, F., Regar, E., den Uil, C. A., Gijsen, F. J., Wentzel, J. J., et al. (2007). Current diagnostic modalities for vulnerable plaque detection. Current Pharmaceutical Design, 13(10), 995–1001.

    Article  PubMed  CAS  Google Scholar 

  63. Bruggink, J. L., Meerwaldt, R., van Dam, G. M., Lefrandt, J. D., Slart, R. H., Tio, R. A., et al. (2010). Spectroscopy to improve identification of vulnerable plaques in cardiovascular disease. The International Journal of Cardiovascular Imaging, 26(1), 111–119. doi:10.1007/s10554-009-9500-z.

    Article  PubMed  Google Scholar 

  64. Moreno, P. R., Lodder, R. A., Purushothaman, K. R., Charash, W. E., O’Connor, W. N., & Muller, J. E. (2002). Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation, 105(8), 923–927.

    Article  PubMed  Google Scholar 

  65. Waxman, S., Dixon, S. R., L’Allier, P., Moses, J. W., Petersen, J. L., Cutlip, D., et al. (2009). In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging, 2(7), 858–868. doi:10.1016/j.jcmg.2009.05.001.

    Article  PubMed  Google Scholar 

  66. Garg, S., Serruys, P. W., van der Ent, M., Schultz, C., Mastik, F., van Soest, G., et al. (2010). First use in patients of a combined near infra-red spectroscopy and intra-vascular ultrasound catheter to identify composition and structure of coronary plaque. EuroIntervention, 5(6), 755–756.

    Article  PubMed  Google Scholar 

  67. Sharif, F., & Murphy, R. T. (2010). Current status of vulnerable plaque detection. Catheterization and Cardiovascular Interventions, 75(1), 135–144. doi:10.1002/ccd.22164.

    Article  PubMed  Google Scholar 

  68. Schaar, J. A., De Korte, C. L., Mastik, F., Strijder, C., Pasterkamp, G., Boersma, E., et al. (2003). Characterizing vulnerable plaque features with intravascular elastography. Circulation, 108(21), 2636–2641. doi:10.1161/01.cir.0000097067.96619.1f.

    Article  PubMed  Google Scholar 

  69. Schaar, J. A., van der Steen, A. F., Mastik, F., Baldewsing, R. A., & Serruys, P. W. (2006). Intravascular palpography for vulnerable plaque assessment. Journal of the American College of Cardiology, 47(8 Suppl), C86–C91. doi:10.1016/j.jacc.2006.01.035.

    Article  PubMed  Google Scholar 

  70. Dhawan, S. S., Avati Nanjundappa, R. P., Branch, J. R., Taylor, W. R., Quyyumi, A. A., Jo, H., et al. (2010). Shear stress and plaque development. Expert Review of Cardiovascular Therapy, 8(4), 545–556. doi:10.1586/erc.10.28.

    Article  PubMed  Google Scholar 

  71. Eshtehardi, P., McDaniel, M., Suo, J., Dhawan, S., Avati Nanjundappa, R., Sawaya, F., et al. (2010). Association of wall shear stress with coronary plaque progression and composition: a serial human radiofrequency intravascular ultrasound study. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, e183–e321.

    Article  Google Scholar 

Download references

Conflicts of Interest

Habib Samady receives research support from Volcano Corporation and St. Jude Medical, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Samady.

Additional information

Parham Eshtehardi and Jennifer Luke contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshtehardi, P., Luke, J., McDaniel, M.C. et al. Intravascular Imaging Tools in the Cardiac Catheterization Laboratory: Comprehensive Assessment of Anatomy and Physiology. J. of Cardiovasc. Trans. Res. 4, 393–403 (2011). https://doi.org/10.1007/s12265-011-9272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9272-4

Keywords

Navigation