Skip to main content
Log in

Physiologic and Pathologic Changes in Patients with Continuous-Flow Ventricular Assist Devices

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The clinical use of the newer continuous-flow pumps for mechanical circulatory support have resulted in superior outcomes including significantly reduced complication rates with improved durability over first generation pulsatile design pumps. However, as with all new technology, the newer LVADs have introduced a different set of management issues, as well as a unique risk profile into the mechanical circulatory support arena that were previously absent or unimportant with pulsatile LVADs. These include the effects of continuous flow on the systemic circulation and end-organ function, risk of thromboembolism, and pump thrombosis related to contact bearings in the blood path, the possible increased incidence of gastrointestinal bleeding, and ventricular arrhythmias, as well as alterations in the unloading characteristics of continuous-flow devices. This manuscript overviews the physiologic and pathologic effects that are associated with continuous-flow pumps and their unique management issues and complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frazier, O. H., Rose, E. A., Oz, M. C., et al. (2001). Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. Journal of thoracic and cardiovascular surgery, 122, 1186–1195.

    Article  PubMed  CAS  Google Scholar 

  2. Frazier, O. H., Rose, E. A., McCarthy, P., et al. (1995). Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system. Annals of Surgery, 222, 327–336.

    Article  PubMed  CAS  Google Scholar 

  3. Morgan, J. A., John, R., Rao, V., et al. (2004). Bridging to transplant with the HeartMate left ventricular assist device: The Columbia Presbyterian 12-year experience. Journal of thoracic and cardiovascular surgery, 127, 1309–1316.

    Article  PubMed  Google Scholar 

  4. Rose, E. A., Gelijns, A. C., Moskowitz, A. J., et al. (2001). Long-term mechanical left ventricular assistance for end-stage heart failure. New England Journal of Medicine, 345, 1435–1443.

    Article  PubMed  CAS  Google Scholar 

  5. Pagani, F. D., Long, J. W., Dembitsky, W. P., et al. (2006). Improved mechanical reliability of the HeartMate XVE left ventricular assist system. Annals of Thoracic Surgery, 82, 1413–1419.

    Article  PubMed  Google Scholar 

  6. Feller, E. D., Sorensen, E. N., Haddad, M., et al. (2007). Clinical outcomes are similar in pulsatile and nonpulsatile left ventricular assist device recipients. Annals of Thoracic Surgery, 83, 1082–1088.

    Article  PubMed  Google Scholar 

  7. Frazier, O. H., Gemmato, C., Myers, T. J., et al. (2007). Initial clinical experience with the HeartMate II axial-flow left ventricular assist device. Texas Heart Institute Journal, 34, 275–281.

    PubMed  CAS  Google Scholar 

  8. Miller, L. W., Pagani, F. D., Russell, S. D., et al. (2007). Use of a continuous-flow device in patients awaiting heart transplantation. New England Journal of Medicine, 357, 885–896.

    Article  PubMed  CAS  Google Scholar 

  9. John, R., Kamdar, F., Liao, K., et al. (2008). Improved survival and decreasing incidence of adverse events using the HeartMate II left ventricular assist device as a bridge-to-transplant. Annals of Thoracic Surgery, 86, 1227–1235.

    Article  PubMed  Google Scholar 

  10. John, R. (2008). Current axial flow pumps—HeartMate II and Jarvik LVADs. Seminars in Thoracic and Cardiovascular Surgery, 20, 264–272.

    Article  PubMed  Google Scholar 

  11. Rose, E. A., Levin, H. R., Oz, M. C., et al. (1994). Artificial circulatory support with textured interior surfaces: a counterintuitive approach to minimize thromboembolism. Circulation, 90(5 pt 2), II87–91.

    PubMed  CAS  Google Scholar 

  12. John, R., Kamdar, F., Liao, K., et al. (2008). Low thromboembolic risk with the HeartMate II left ventricular assist device. Journal of thoracic and cardiovascular surgery, 136, 1318–1323.

    Article  PubMed  Google Scholar 

  13. Letsou, G. V., Shah, N., Gregoric, I. D., et al. (2005). Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 24, 105–109.

    Article  PubMed  Google Scholar 

  14. Crow, S., John, R., Boyle, A., et al. (2009). Gastrointestinal bleeding rates in recipients of non-pulsatile and pulsatile left ventricular assist devices. Journal of Thoracic and Cardiovascular Surgery, 137, 208–215.

    Article  PubMed  Google Scholar 

  15. Heyde, E. C. (1958). Gastrointestinal bleeding in aortic stenosis (letter). New England Journal of Medicine, 259, 196.

    Google Scholar 

  16. Boley, S. J., Sammarteno, R., Adams A., et al. (1977). Vascular ectasias of the colon. On the nature and etiology of vascular ectasias of the colon. Gastroenterolgy, 72, 650–660.

    CAS  Google Scholar 

  17. Warkentin, T. E., Moore, J. C., & Morgan, D. G. (1992). Aortic stenosis and bleeding gastrointestinal angiodysplasia: is acquired von Willebrand’s disease the link? Lancet, 340, 35–37.

    Article  PubMed  CAS  Google Scholar 

  18. Furlan, M. (1996). von Willebrand factor: molecular size and functional activity. Annals of Hematology, 72, 341–348.

    Article  PubMed  CAS  Google Scholar 

  19. Ruggeri, Z. M. (2003). von Willebrand factor. Current Opinion in Hematology, 10, 142–149.

    Article  PubMed  CAS  Google Scholar 

  20. Vincentelli, A., Susen, S., Le Tourneau, T., Six, I., Fabre, O., Juthier, F., et al. (2003). Acquired von Willebrand syndrome in aortic stenosis. New England Journal of Medicine, 349, 343–349.

    Article  PubMed  Google Scholar 

  21. Geisen, U., Heilmann, C., Beyersdorf, F., et al. (2008). Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. European Journal of Cardiothoracic Surgery, 22, 679–684.

    Article  Google Scholar 

  22. Weslowski, S., Fisher, J., & Welch, C. (1953). Perfusion of the pulmonary circulation by non-pulsatile flow. Surgery, 33, 370.

    Google Scholar 

  23. Johnston, G. G., Hammill, F., Marzec, U., et al. (1976). Prolonged pulseless perfusion in unanesthetized calves. Archives of Surgery, 111, 1125–1130.

    Google Scholar 

  24. Saito, S., Westaby, S., Piggot, D., et al. (2002). End-organ function during chronic nonpulsatile circulation. Annals of Thoracic Surgery, 74, 1080–1085.

    Article  PubMed  Google Scholar 

  25. Nakata, K., Shiono, M., Orime, Y., et al. (1996). Effect of pulsatile and nonpulsatile assist on heart and kidney microcirculation with cardiogenic shock. Artificial Organs, 20, 681–684.

    Article  PubMed  CAS  Google Scholar 

  26. Letsou, G. V., Myers, T. J., Gregoric, I. D., et al. (2003). Continuous axial-flow left ventricular assist device (Jarvik 2000) maintains kidney and liver perfusion for up to 6 months. Annals of Thoracic Surgery, 76, 1167–1170.

    Article  PubMed  Google Scholar 

  27. Radovancevic, B., Vrtovec, B., de Kort, E., Radovancevic, R., Gregoric, I. D., & Frazier, O. H. (2007). End-organ function in patients on long-term circulatory support with continuous or pulsatile-flow assist devices. Journal of Heart Transplantation, 26(8), 815–818.

    Article  Google Scholar 

  28. Kamdar, F., Boyle, A., Liao, K., Colvin-Adams, M., Joyce, L., John, R. (2009). Effects of centrifugal, axial and pulsatile left ventricular assist device (LVAD) support on end-organ function in heart failure patients. Journal of Heart and Lung Transplantation (in press).

  29. Klotz, S., Deng, M. C., Stymann, J., et al. (2004). Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support. Annals of Thoracic Surgery, 77, 143–150.

    Article  PubMed  Google Scholar 

  30. Haft, J., Armstrong, W., Dyke, D. B., et al. (2007). Hemodynamic and exercise performance with pulsatile and continuous-flow left ventricular assist devices. Circulation, 116, I–8–15.

    Article  Google Scholar 

  31. Thohan, V., Stetson, S. J., Nagueh, S. F., et al. (2005). Cellular and hemodynamic responses of failing myocardium to continuous flow mechanical circulatory support using the DeBakey-Noon left ventricular assist device: a comparative analysis with pulsatile-type devices. Journal of Heart Transplantation, 24, 566–575.

    Article  Google Scholar 

  32. Garcia, S., Kamdar, F., Boyle, A., et al. (2008). Effects of pulsatile- and continuous-flow left ventricular assist devices on left ventricular unloading. Journal of Heart Transplantation, 27, 261–267.

    Article  Google Scholar 

  33. Etz, C. D., Welp, H. A., Tjan, T. D., et al. (2007). Medically refractory pulmonary hypertension: treatment with nonpulsatile left ventricular assist devices. Annals of Thoracic Surgery, 83, 1697–1706.

    Article  PubMed  Google Scholar 

  34. Cao, X., Haft, J., Dyke, D. B., et al. Increased incidence of ventricular tachycardia following left ventricular assist device implantation with continuous flow rotary pumps. Presented at 10th Annual Scientific Meeting of the Heart Failure Society of America, Sep 2006, Seattle, WA.

  35. Vollkron, M., Voitl, P., Ta, J., et al. (2007). Suction events during left ventricular and ventricular arrhythmias. Journal of Heart Transplantation, 26, 819–825.

    Article  Google Scholar 

  36. Wu, Yi., Allaire, P., Tao, G., et al. (2003). An advanced physiological controller design for a left ventricular assist device to prevent left ventricular collapse. Artificial Organs, 10, 926–930.

    Article  Google Scholar 

  37. Vollkron, M., Schima, H., Huber, L., et al. (2006). Advanced suction detection for an axial flow pump. Artificial Organs, 9, 665–670.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit John.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, R., Boyle, A., Pagani, F. et al. Physiologic and Pathologic Changes in Patients with Continuous-Flow Ventricular Assist Devices. J. of Cardiovasc. Trans. Res. 2, 154–158 (2009). https://doi.org/10.1007/s12265-009-9092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9092-y

Keywords

Navigation