Skip to main content

Advertisement

Log in

Clemastine rescues behavioral changes and enhances remyelination in the cuprizone mouse model of demyelination

  • Report
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that white matter disorders based on myelin sheath impairment may underlie the neuropathological changes in schizophrenia. But it is unknown whether enhancing remyelination is a beneficial approach to schizophrenia. To investigate this hypothesis, we used clemastine, an FDA-approved drug with high potency in promoting oligodendroglial differentiation and myelination, on a cuprizone-induced mouse model of demyelination. The mice exposed to cuprizone (0.2% in chow) for 6 weeks displayed schizophrenia-like behavioral changes, including decreased exploration of the center in the open field test and increased entries into the arms of the Y-maze, as well as evident demyelination in the cortex and corpus callosum. Clemastine treatment was initiated upon cuprizone withdrawal at 10 mg/kg per day for 3 weeks. As expected, myelin repair was greatly enhanced in the demyelinated regions with increased mature oligodendrocytes (APC-positive) and myelin basic protein. More importantly, the clemastine treatment rescued the schizophrenia-like behavioral changes in the open field test and the Y-maze compared to vehicle, suggesting a beneficial effect via promoting myelin repair. Our findings indicate that enhancing remyelination may be a potential therapy for schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crabtree GW, Gogos JA. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Front Synaptic Neurosci 2014, 6: 28.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Eisenberg DP, Berman KF. Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology 2010, 35: 258–277.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Konrad A, Winterer G. Disturbed structural connectivity in schizophrenia - Primary factor in pathology or epiphenomenon? Schizophr Bull 2008, 34: 72–92.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lesh TA, Niendam TA, Minzenberg MJ, Carter CS. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology 2011, 36: 316–338.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G. Myelination, oligodendrocytes, and serious mental illness. Glia 2014, 62: 1856–1877.

    Article  CAS  PubMed  Google Scholar 

  6. Bernstein HG, Steiner J, Guest PC, Dobrowolny H, Bogerts B. Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 2014, 161: 4–18.

    Article  PubMed  Google Scholar 

  7. Hartline DK, Colman DR. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 2007, 17: R29–35.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Q, Deng W, Huang C, Li M, Ma X, Wang Y, et al. Abnormalities in connectivity of white-matter tracts in patients with familial and non-familial schizophrenia. Psychol Med 2011, 41: 1691–1700.

    Article  CAS  PubMed  Google Scholar 

  9. Yu H, Bi W, Liu C, Zhao Y, Zhang D, Yue W. A hypothesisdriven pathway analysis reveals myelin-related pathways that contribute to the risk of schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014, 51: 140–145.

    Article  CAS  PubMed  Google Scholar 

  10. Davis K, Stewart D, Friedman J, Buchsbaum M. White matter changes in schizophrenia. Arch Gen Psychiatry 2003, 60: 443–456.

    Article  PubMed  Google Scholar 

  11. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003, 362: 798–805.

    Article  CAS  PubMed  Google Scholar 

  12. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: A study from the Stanley Neuropathology Consortium. Schizophr Res 2004, 67: 269–275.

    Article  PubMed  Google Scholar 

  13. Voineskos AN, Felsky D, Kovacevic N, Tiwari AK, Zai C, Mallar Chakravarty M, et al. Oligodendrocyte genes, white matter tract integrity, and cognition in schizophrenia. Cereb Cortex 2013, 23: 2044–2057.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Walterfang M, Wood SJ, Velakoulis D, Copolov D, Pantelis C. Diseases of white matter and schizophrenia-like psychosis. Aust N Z J Psychiatry 2005, 39: 746–756.

    Article  PubMed  Google Scholar 

  15. Yao L, Lui S, Liao Y, Du MY, Hu N, Thomas JA, et al. White matter deficits in first episode schizophrenia: An activation likelihood estimation meta-analysis. Prog Neuro-Psychopharmacology Biol Psychiatry 2013, 45: 100–106.

    Article  Google Scholar 

  16. Wan C, Yang Y, Feng G, Gu N, Liu H, Zhu S, et al. Polymorphisms of myelin-associated glycoprotein gene are associated with schizophrenia in the Chinese Han population. Neurosci Lett 2005, 388: 126–131.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Zhang H, Wang L, Jiang W, Xu H, Xiao L, et al. Quetiapine enhances oligodendrocyte regeneration and myelin repair after cuprizone-induced demyelination. Schizophr Res 2012, 138: 8–17.

    Article  PubMed  Google Scholar 

  18. Xiao L, Xu H, Zhang Y, Wei Z, He J, Jiang W, et al. Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol Psychiatry 2008, 13: 697–708.

    Article  CAS  PubMed  Google Scholar 

  19. Mei F, Guo S, He Y, Wang L, Wang H, Niu J, et al. Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation. PLoS One 2012, 7: e42746.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhornitsky S, Wee Yong V, Koch MW, Mackie A, Potvin S, Patten SB, et al. Quetiapine fumarate for the treatment of multiple sclerosis: focus on myelin repair. CNS Neurosci Ther 2013, 19: 737–744.

    CAS  PubMed  Google Scholar 

  21. Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 2003, 4: 703–713.

    Article  CAS  PubMed  Google Scholar 

  22. Fancy SPJ, Chan JR, Baranzini SE, Franklin RJM, Rowitch DH. Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 2011, 34: 21–43.

    Article  CAS  PubMed  Google Scholar 

  23. Mei F, Christin Chong SY, Chan JR. Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration. Neurosci Bull 2013, 29: 177–188.

    Article  CAS  PubMed  Google Scholar 

  24. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 2002, 346: 165–173.

    Article  PubMed  Google Scholar 

  25. Wolswijk G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 2002, 125: 338–349.

    Article  PubMed  Google Scholar 

  26. Mei F, Fancy SP, Shen YA, Niu J, Zhao C, Presley B, et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med 2014, 20: 954–960.

    Article  CAS  PubMed  Google Scholar 

  27. Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B, Kim HJ, et al. A regenerative approach to the treatment of multiple sclerosis. Nature 2013, 502: 327–332.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wang H, Li C, Wang H, Mei F, Liu Z, Shen HY, et al. Cuprizone-induced demyelination in mice: Age-related vulnerability and exploratory behavior deficit. Neurosci Bull 2013, 29: 251–259.

    Article  PubMed  Google Scholar 

  29. Taylor LC, Gilmore W, Ting JP, Matsushima GK. Cuprizone induces similar demyelination in male and female C57BL/6 mice and results in disruption of the estrous cycle. J Neurosci Res 2010, 88: 391–402.

    Article  CAS  PubMed  Google Scholar 

  30. Xu H, Yang HJ, McConomy B, Browning R, Li XM. Behavioral and neurobiological changes in C57BL/6 mouse exposed to cuprizone: effects of antipsychotics. Front Behav Neurosci 2010, 4: 1–10.

    Article  Google Scholar 

  31. Makinodan M, Rosen KM, Ito S, Corfas G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 2012, 337: 1357–1360.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Makinodan M, Yamauchi T, Tatsumi K, Okuda H, Takeda T, Kiuchi K. Demyelination in the juvenile period, but not in adulthood, leads to long-lasting cognitive impairment and deficient social interaction in mice. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33: 978–985.

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, Kaur J, et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice Nat Neurosci 2012, doi:10.1038/nn.3263.

    Google Scholar 

  34. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 2014, 344: 1252304.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sakry D, Neitz A, Singh J, Frischknecht R, Marongiu D, Binamé F, et al. Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 2014, 12: e1001993.

    Article  PubMed Central  PubMed  Google Scholar 

  36. McKenzie IA, Ohayon D, Li H, Paes de Faria J, Emery B, Tohyama K, et al. Motor skill learning requires active central myelination. Science 2014, 346: 318–322.

    Article  CAS  PubMed  Google Scholar 

  37. Taylor LC, Gilmore W, Matsushima GK. SJL mice exposed to cuprizone intoxication reveal strain and gender pattern differences in demyelination. Brain Pathol 2009, 19: 467–479.

    Article  CAS  PubMed  Google Scholar 

  38. Skripuletz T, Lindner M, Kotsiari A, Garde N, Fokuhl J, Linsmeier F, et al. Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 2008, 172: 1053–1061.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhifang Li or Yangtao He.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., He, Y., Fan, S. et al. Clemastine rescues behavioral changes and enhances remyelination in the cuprizone mouse model of demyelination. Neurosci. Bull. 31, 617–625 (2015). https://doi.org/10.1007/s12264-015-1555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1555-3

Keywords

Navigation