Skip to main content

Advertisement

Log in

Can multi-modal neuroimaging evidence from hippocampus provide biomarkers for the progression of amnestic mild cognitive impairment?

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Impaired structure and function of the hippocampus is a valuable predictor of progression from amnestic mild cognitive impairment (aMCI) to Alzheimer’s disease (AD). As a part of the medial temporal lobe memory system, the hippocampus is one of the brain regions affected earliest by AD neuropathology, and shows progressive degeneration as aMCI progresses to AD. Currently, no validated biomarkers can precisely predict the conversion from aMCI to AD. Therefore, there is a great need of sensitive tools for the early detection of AD progression. In this review, we summarize the specific structural and functional changes in the hippocampus from recent aMCI studies using neurophysiological and neuroimaging data. We suggest that a combination of advanced multi-modal neuroimaging measures in discovering biomarkers will provide more precise and sensitive measures of hippocampal changes than using only one of them. These will potentially affect early diagnosis and disease-modifying treatments. We propose a new sequential and progressive framework in which the impairment spreads from the integrity of fibers to volume and then to function in hippocampal subregions. Meanwhile, this is likely to be accompanied by progressive impairment of behavioral and neuropsychological performance in the progression of aMCI to AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild cognitive impairment: ten years later. Arch Neurol 2009, 66: 1447–1455.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr 2008, 13: 45–53.

    PubMed  Google Scholar 

  3. Gainotti G, Marra C, Villa G, Parlato V, Chiarotti F. Sensitivity and specificity of some neuropsychological markers of Alzheimer dementia. Alzheimer Dis Assoc Disord 1998, 12:152–162.

    Article  CAS  PubMed  Google Scholar 

  4. Budson AE, Price BH. Memory Dysfunction. N Engl J Med 2005, 352: 692–699.

    Article  CAS  PubMed  Google Scholar 

  5. Cabeza R, Nyberg L. Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol 2000, 13: 415–421.

    Article  CAS  PubMed  Google Scholar 

  6. Braak H, Braak E. Neuropathological stageing of Alzheimerrelated changes. Acta Neuropathol 1991, 82: 239–259.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson SC, Schmitz TW, Moritz CH, Meyerand ME, Rowley HA, Alexander AL, et al. Activation of brain regions vulnerable to Alzheimer’s disease: The effect of mild cognitive impairment. Neurobiol Aging 2006, 27: 1604–1612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dickerson BC, Goncharova I, Sullivan MP, Forchetti C, Wilson RS, Bennett DA, et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging 2001, 22: 747–754.

    Article  CAS  PubMed  Google Scholar 

  9. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hänninen T, Laakso MP, et al. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 2004, 25: 303–310.

    Article  PubMed  Google Scholar 

  10. Biomarkers Definitions Working Group. Biomarkers and surrogate end-points: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001, 69: 89–95.

    Article  Google Scholar 

  11. Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol 2005, 62: 1160–1163.

    Article  PubMed  Google Scholar 

  12. Thompson PM, Hayashi KM, De Zubicaray GI, Janke AL, Rose SE, Semple J, et al. Mapping hippocampal and ventricular change in Alzheimer disease. NeuroImage 2004, 22: 1754–1766.

    Article  PubMed  Google Scholar 

  13. Karas GB, Scheltens P, Rombouts SA, Visser PJ, van Schijndel RA, Fox NC, et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2004, 23: 708–716.

    Article  CAS  PubMed  Google Scholar 

  14. Apostolova LG, Dinov ID, Dutton RA, Hayashi KM, Toga AW, Cummings JL, et al. 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer’s disease. Brain 2006, 129: 2867–2873.

    Article  PubMed  Google Scholar 

  15. Chen J, Shu H, Wang Z, Liu D, Shi Y, Zhang X, et al. The interaction of APOE genotype by age in amnestic mild cognitive impairment: A voxel-based morphometric study. J Alzheimers Dis 2015, 43: 657–668.

    CAS  PubMed  Google Scholar 

  16. Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus 2009, 19: 1055–1064.

    Article  PubMed  Google Scholar 

  17. Becker JT, Davis SW, Hayashi KM, Meltzer CC, Toga AW, Lopez OL, et al. Three-dimensional patterns of hippocam pal atrophy in mild cognitive impairment. Arch Neurol 2006, 63: 97–101.

    Article  PubMed  Google Scholar 

  18. Fouquet M, Desgranges B, La Joie R, Rivière D, Mangin JF, Landeau B, et al. Role of hippocampal CA1 atrophy in memory encoding deficits in amnestic Mild Cognitive Impairment. Neuroimage 2012, 59: 3309–3315.

    Article  PubMed  Google Scholar 

  19. Pluta J, Yushkevich P, Das S, Wolk D. In vivo analysis of hippocampal subfield atrophy in mild cognitive impairment via semi-automatic segmentation of T2-weighted MRI. J Alzheimers Dis 2012, 31: 85–99.

    PubMed Central  PubMed  Google Scholar 

  20. Apostolova LG, Dutton RA, Dinov ID, Hayashi KM, Toga AW, Cummings JL, et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol 2006, 63: 693–699.

    Article  PubMed  Google Scholar 

  21. Liu Y, Paajanen T, Zhang Y, Westman E, Wahlund LO, Simmons A, et al. Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging 2010, 31: 1375–1385.

    Article  PubMed  Google Scholar 

  22. Devanand DP, Bansal R, Liu J, Hao X, Pradhaban G, Peterson BS. MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer’s disease. Neuroimage 2012, 60: 1622–1629.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Frankó E, Joly O. Evaluating Alzheimer’s disease progression using rate of regional hippocampal atrophy. PLoS One 2013, 8: e71354.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Griffith HR, Okonkwo OC, Stewart CC, Stoeckel LE, Hollander JA, Elgin JM, et al. Lower hippocampal volume predicts decrements in lane control among drivers with amnestic mild cognitive impairment. J Geriatr Psychiatry Neurol 2013, 26: 259–266.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Jack CR Jr, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve BF, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 2005, 65: 1227–1231.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Miettinen PS, Pihlajamäki M, Jauhiainen AM, Niskanen E, Hänninen T, Vanninen R, et al. Structure and function of medial temporal and posteromedial cortices in early Alzheimer’s disease. Eur J Neurosci 2011, 34: 320–330.

    Article  PubMed  Google Scholar 

  27. van de Pol LA, van der Flier WM, Korf ES, Fox NC, Barkhof F, Scheltens P. Baseline predictors of rates of hippocampal atrophy in mild cognitive impairment. Neurology 2007, 69: 1491–1497.

    Article  PubMed  Google Scholar 

  28. Jack CR Jr, Petersen RC, Grundman M, Jin S, Gamst A, Ward CP, et al. Longitudinal MRI findings from the vitamin E and donepezil treatment study for MCI. Neurobiol Aging 2008, 29: 1285–1295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Luckhaus C, Cohnen M, Flüss MO, Jänner M, Grass-Kapanke B, Teipel SJ, et al. The relation of regional cerebral perfusion and atrophy in mild cognitive impairment (MCI) and early Alzheimer’s dementia. Psychiatry Res 2010, 183: 44–51.

    Article  PubMed  Google Scholar 

  30. Arlt S, Buchert R, Spies L, Eichenlaub M, Lehmbeck JT, Jahn H. Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 2013, 263: 335–344.

    Article  PubMed  Google Scholar 

  31. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hänninen T, Laakso MP, et al. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 2004, 25: 303–310.

    Article  PubMed  Google Scholar 

  32. Jack CR Jr, Shiung MM, Gunter JL, O’Brien PC, Weigand SD, Knopman DS, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 2004, 62: 591–600.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Leung KK, Bartlett JW, Barnes J, Manning EN, Ourselin S, Fox NC. Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration. Neurology 2013, 80: 648–654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 2003, 4: 469–480.

    Article  PubMed  Google Scholar 

  35. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996, 36: 893–906.

    Article  CAS  PubMed  Google Scholar 

  36. Carlesimo GA, Cherubini A, Caltagirone C, Spalletta G. Hippocampal mean diffusivity and memory in healthy elderly individuals: a cross-sectional study. Neurology 2010, 74: 194e200.

    Article  Google Scholar 

  37. Fellgiebel A, Wille P, Müller MJ, Winterer G, Scheurich A, Vucurevic G, et al. Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dement Geriatr Cogn Disord 2004, 18: 101–108.

    Article  PubMed  Google Scholar 

  38. Muller MJ, Greverus D, Weibrich C, Dellani PR, Scheurich A, Stoeter P, et al. Diagnostic utility of hippocampal size and mean diffusivity in amnestic MCI. Neurobiol Aging 2007, 28: 398–403.

    Article  PubMed  Google Scholar 

  39. Zhou Y, Dougherty JH, Hubner KF, Bai B, Cannon RL. Hutson RK. Abnormal connectivity in the posterior cingulated and hippocampus in early Alzheimer’s disease and mild cognitive impairment, Alzheimers Dement 2008, 4: 265–270.

    Article  PubMed  Google Scholar 

  40. Cherubini A, Peran P, Spoletini I, Di Paola M, Di Iulio F, Hagberg GE, et al. Combined volumetry and DTI in subcortical structures of mild cognitive impairment and Alzheimer’s disease patients. J Alzheimers Dis 2010, 19: 1273–1282.

    PubMed  Google Scholar 

  41. Lee DY, Fletcher E, Carmichael OT, Singh B, Mungas D, Reed B, et al. Sub-Regional Hippocampal Injury is Associated with Fornix Degeneration in Alzheimer’s Disease. Front Aging Neurosci 2012, 4: 1.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Penke L, Maniega SM, Bastin ME, Hernández MC, Murray C, Royle NA, et al. Brain-wide white matter tract integrity is associated with information processing speed and general intelligence. Mol Psychiatry 2012, 17: 955.

    Article  CAS  PubMed  Google Scholar 

  43. den Heijer T, van der Lijn F, Vernooij MW, de Groot M, Koudstaal PJ, van der Lugt A, et al. Structural and diffusion MRI measures of the hippocampus and memory performance. NeuroImage 2012, 63: 1782e1789.

    Google Scholar 

  44. Li YD, Dong HB, Xie GM, Zhang LJ. Discriminative analysis of mild Alzheimer’s disease and normal aging using volume of hippocampal subfields and hippocampal mean diffusivity: an in vivo magnetic resonance imaging study. Am J Alzheimers Dis Other Demen 2013, 28: 627–633.

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Swank JS, Glick IE, Gado MH, Miller MI, Morris JC, et al. Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging. Neuroimage 2003, 20: 667–682.

    Article  CAS  PubMed  Google Scholar 

  46. Schölvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA. Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci U S A 2010, 107: 10238–10243.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995, 34: 537–541.

    Article  CAS  PubMed  Google Scholar 

  48. Gould RL, Brown RG, Owen AM, Bullmore ET, Williams SC, Howard RJ. Functional neuroanatomy of successful paired associate learning in Alzheimer’s disease. Am J Psychiatry 2005, 162: 2049–2060.

    Article  PubMed  Google Scholar 

  49. Coleman P, Federoff H, Kurlan R. A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 2004, 63: 1155–1162.

    Article  PubMed  Google Scholar 

  50. Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG. Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 2002, 225: 253–259.

    Article  PubMed  Google Scholar 

  51. Bai F, Zhang Z, Watson DR, Yu H, Shi Y, Yuan Y, et al. Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment. Biol Psychiatry 2009, 65: 951–958.

    Article  PubMed  Google Scholar 

  52. Bai F, Liao W, Watson DR, Shi Y, Wang Y, Yue C, et al. Abnormal whole-brain functional connection in amnestic mild cognitive impairment patients. Behav Brain Res 2011, 216: 666–672.

    Article  PubMed  Google Scholar 

  53. Xie C, Li W, Chen G, Ward BD, Franczak MB, Jones JL, et al. Late-life depression, mild cognitive impairment and hippocampal functional network architecture. Neuroimage Clin 2013, 3: 311–320.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Wang Z, Liang P, Jia X, Qi Z, Yu L, Yang Y, et al. Baseline and longitudinal patterns of hippocampal connectivity in mild cognitive impairment: evidence from resting state fMRI. J Neurol Sci 2011, 309: 79–85.

    Article  PubMed  Google Scholar 

  55. Qi Z, Wu X, Wang Z, Zhang N, Dong H, Yao L, et al. Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage 2010, 50: 48–55.

    Article  PubMed  Google Scholar 

  56. Das SR, Pluta J, Mancuso L, Kliot D, Orozco S, Dickerson BC, et al. Increased functional connectivity within medial temporal lobe in mild cognitive impairment. Hippocampus 2013, 23: 1–6.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Wilson IA, Gallagher M, Eichenbaum H, Tanila H. Neurocognitive aging: prior memories hinder new hippocampal encoding. Trends Neurosci 2006, 29: 662–670.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Yassa MA, Mattfeld AT, Stark SM, Stark CEL. Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proc Natl Acad Sci U S A 2011, 108: 8873–8878.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci 2003, 23: 986–993.

    CAS  PubMed  Google Scholar 

  60. Carr VA, Rissman J, Wagner AD. Imaging the human medial temporal lobe with high-resolution fmri. Neuron 2010, 65: 298–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Johnson SC, Baxter LC, Susskind-Wilder L, Connor DJ, Sabbagh MN, Caselli RJ. Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment. Neuropsychologia 2004, 42: 980–989.

    Article  PubMed  Google Scholar 

  62. Petrella JR, Krishnan S, Slavin MJ, Tran TT, Murty L, Doraiswamy PM. Mild cognitive impairment: Evaluation with 4-T functional MR imaging. Radiology 2006, 240: 177–186.

    Article  PubMed  Google Scholar 

  63. Dickerson BC, Salat DH, Bates JF, Atiya M, Killiany RJ, Greve DN, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 2004, 56: 27–35.

    Article  PubMed  Google Scholar 

  64. Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005, 65: 404–411.

    Article  CAS  PubMed  Google Scholar 

  65. Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci 2006, 26: 10222–10231.

    Article  CAS  PubMed  Google Scholar 

  66. Kircher T, Weis S, Freymann K, Erb M, Jessen F, Grodd W, et al. Hippocampal activation in MCI patients is necessary for successful memory encoding. J Neurol Neurosurg Psychiatry 2007, 78: 812–818.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Dickerson BC, Miller SL, Greve DN, Dale AM, Albert MS, Schacter DL, et al. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: An event-related functional-anatomic MRI study. Hippocampus 2007, 17: 1060–1070.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Miller SL, Fenstermacher E, Bates J, Blacker D, Sperling RA, Dickerson BC. Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J Neurol Neurosurg Psychiatry 2008, 79: 630–635.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CEL. High-resolution structural and functional mri of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. Neuroimage 2010, 51: 1242–1252.

    Article  PubMed Central  PubMed  Google Scholar 

  70. de Rover M, Pironti VA, McCabe JA, Acosta-Cabronero J, Arana FS, Morein-Zamir S, et al. Hippocampal dysfunction in patients with mild cognitive impairment: a functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia 2011, 49: 2060–2070.

    Article  PubMed  Google Scholar 

  71. Parra MA, Pattan V, Wong D, Beaglehole A, Lonie J, Wan HI, et al. Medial temporal lobe function during emotional memory in early Alzheimer’s disease, mild cognitive impairment and healthy ageing: an fMRI study. BMC Psychiatry 2013, 13: 76.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Nellessen N, Rottschy C, Eickhoff SB, Ketteler ST, Kuhn H, Shah NJ, et al. Specific and disease stage-dependent episodic memory-related brain activation patterns in Alzheimer’s disease: a coordinate-based meta-analysis. Brain Struct Funct 2014, in press.

    Google Scholar 

  73. Hamalainen A, Pihlajamaki M, Tanila H, Hanninen T, Niskanen E, Tervo S, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 2006, 28: 1889–1903.

    Article  PubMed  Google Scholar 

  74. Dickerson BC, Sperling RA. Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behav Neurol 2009, 21: 63–75.

    Article  PubMed Central  PubMed  Google Scholar 

  75. DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002, 51: 145–155.

    Article  CAS  PubMed  Google Scholar 

  76. Rosen AC, Sugiura L, Kramer JH, Whitfield-Gabrieli S, Gabrieli JD. Cognitive training changes hippocampal function in mild cognitive impairment: a pilot study. J Alzheimers Dis 2011, Suppl 3: 349–357.

    Google Scholar 

  77. Hampstead BM, Stringer AY, Stilla RF, Giddens M, Sathian K. Mnemonic strategy training partially restores hippocampal activity in patients with mild cognitive impairment. Hippocampus 2012, 22: 1652–1658.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Dai Z, He Y. Disrupted structural and functional brain connectomes in mild cognitive impairment and Alzheimer’s disease. Neurosci Bull 2014, 30: 217–232.

    Article  PubMed  Google Scholar 

  79. Hu Z, Wu L, Jia J, Han Y. Advances in longitudinal studies of amnestic mild cognitive impair ment and Alzheimer’s disease based on multi-modal MRI techniques. Neurosci Bull 2014, 30:198–206.

    Article  PubMed  Google Scholar 

  80. Muller MJ, Greverus D, Dellani PR, Weibrich C, Wille PR, Scheurich A, et al. Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. Neuroimage 2005, 28: 1033–1042.

    Article  PubMed  Google Scholar 

  81. Hamalainen A, Pihlajamaki M, Tanila H, Hanninen T, Niskanen E, Tervo S, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 2007, 28: 1889–1903.

    Article  PubMed  Google Scholar 

  82. Palesi F, Vitali P, Chiarati P, Castellazzi G, Caverzasi E, Pichiecchio A, et al. DTI and MR volumetry of hippocampus- PC/PCC circuit: In search of early micro- and macrostructural signs of Alzheimers’s disease. Neurol Res Int 2012, 2012: 517876.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Clerx L, Visser PJ, Verhey F, Aalten P. New MRI markers for Alzheimer’s disease: a meta-analysis of diffusion tensor imaging and a comparison with medial temporal lobe measurements. J Alzheimers Dis 2012, 29: 405–429.

    PubMed  Google Scholar 

  84. Douaud G, Menke RA, Gass A, Monsch AU, Rao A, Whitcher B, et al. Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. J Neurosci 2013, 33: 2147–2155.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao ZL, Fan FM, Lu J, Li HJ, Jia LF, Han Y, et al. Changes of gray matter volume and amplitude of low-frequency oscillations in amnestic MCI: An integrative multi-modal MRI study. Acta Radiol 2014, in press.

    Google Scholar 

  86. Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 2000, 1: 507–537.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Zhang or Shijiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, Z. & Li, S. Can multi-modal neuroimaging evidence from hippocampus provide biomarkers for the progression of amnestic mild cognitive impairment?. Neurosci. Bull. 31, 128–140 (2015). https://doi.org/10.1007/s12264-014-1490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1490-8

Keywords

Navigation