Skip to main content

Advertisement

Log in

An update on spinal cord injury research

Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) can have a range of debilitating effects and permanently alter the capabilities and quality of life of survivors. The first specialized centers of care for SCI were established in 1944 and since then an increasing amount of research has been carried out in this area. Despite this, the present treatment and care levels for SCI are not comparable to those in other areas of medicine. In the clinic, the aim of SCI treatment is primarily to limit secondary damage by reducing compression in trauma spots and stabilizing the spinal column. Currently, no effective strategy for functional recovery is offered. In this review, we focus on research progress on the molecular mechanisms underlying SCI, and assess the treatment outcomes of SCI in animal models, i.e., neurotrophins and stem cells are discussed as pre-clinical therapies in animal models. We also assess the resources available and national research projects carried out on SCI in China in recent years, as well as making recommendations for the future allocation of funds in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Devivo MJ. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 2012, 50(5): 365–372.

    Article  PubMed  CAS  Google Scholar 

  2. Qiu J. China spinal cord injury network: changes from within. Lancet Neurol 2009, 8(7): 606–607.

    Article  PubMed  Google Scholar 

  3. Charles AO. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp 2011, 71: 281–299.

    Google Scholar 

  4. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008, 25(5): E2.

    Article  PubMed  Google Scholar 

  5. Akdemir H, Paşaoğlu A, Oztürk F, Selçuklu A, Koç K, Kurtsoy A. Histopathology of experimental spinal cord trauma. Comparison of treatment with TRH, naloxone, and dexamethasone. Res Exp Med (Berl) 1992, 192(3): 177–183.

    Article  CAS  Google Scholar 

  6. Balentine JD. Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 1978, 39(3): 236–253.

    PubMed  CAS  Google Scholar 

  7. Senter HJ, Venes JL. Altered blood flow and secondary injury in experimental spinal cord trauma. J Neurosurg 1978, 49(4): 569–578.

    Article  PubMed  CAS  Google Scholar 

  8. Fehlings MG, Tator CH, Linden RD. The effect of nimodipine and dextran on axonal function and blood flow following experimental spinal cord injury. J Neurosurg 1989, 71(3): 403–416.

    Article  PubMed  CAS  Google Scholar 

  9. Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991, 75: 15–26.

    Article  PubMed  CAS  Google Scholar 

  10. Taoka Y, Okajima K, Uchiba M, Murakami K, Harada N, Johno M, et al. Activated protein C reduces the severity of compression-induced spinal cord injury in rats by inhibiting activation of leukocytes. J Neurosci 1998, 18: 1393–1398.

    PubMed  CAS  Google Scholar 

  11. Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC, et al. Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 2003, 20: 1017–1027.

    Article  PubMed  Google Scholar 

  12. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 2001, 53(1): 135–159.

    PubMed  CAS  Google Scholar 

  13. Xu GY, Hughes MG, Zhang L, Cain L, McAdoo DJ. Administration of glutamate into the spinal cord at extracellular concentrations reached post-injury causes functional impairments. Neurosci Lett 2005, 384(3): 271–276.

    Article  PubMed  CAS  Google Scholar 

  14. Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010, 28(1): 93–99.

    PubMed  Google Scholar 

  15. Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 1999, 11: 3648–3658.

    Article  PubMed  CAS  Google Scholar 

  16. Bareyre FM, Schwab ME. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 2003, 26(10): 555–563.

    Article  PubMed  CAS  Google Scholar 

  17. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 2011, 71(2): 281–299.

    Google Scholar 

  18. Lindholm D, Castrén E, Kiefer R, Zafra F, Thoenen H. Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 1992, 117(2): 395–400.

    Article  PubMed  CAS  Google Scholar 

  19. Anderson AJ. Mechanisms and pathways of inflammatory responses in CNS trauma: spinal cord injury. J Spinal Cord Med 2002, 25(2): 70–79.

    PubMed  Google Scholar 

  20. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999, 5(1): 49–55.

    Article  PubMed  CAS  Google Scholar 

  21. Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 2000, 15(3): 331–345.

    Article  PubMed  CAS  Google Scholar 

  22. McTigue DM. Potential therapeutic targets for PPARgamma after spinal cord injury. PPAR Res 2008, 2008: 517162.

    Article  PubMed  Google Scholar 

  23. Hall ED, Traystman RJ. Role of animal studies in the design of clinical trials. Front Neurol Neurosci 2009, 25: 10–33.

    Article  PubMed  Google Scholar 

  24. Gris P, Tighe A, Levin D, Sharma R, Brown A. Transcriptional regulation of scar gene expression in primary astrocytes. Glia 2007, 55(11): 1145–1155.

    Article  PubMed  Google Scholar 

  25. Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, et al. Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 1997, 17(14): 5395–5406.

    PubMed  CAS  Google Scholar 

  26. Beattie MS, Farooqui AA, Bresnahan JC. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 2000, 17(10): 915–925.

    Article  PubMed  CAS  Google Scholar 

  27. Happel RD, Smith KP, Banik NL, Powers JM, Hogan EL, Balentine JD. Ca2+-accumulation in experimental spinal cord trauma. Brain Res 1981, 211(2): 476–479.

    Article  PubMed  CAS  Google Scholar 

  28. Imaizumi T, Kocsis JD, Waxman SG. Anoxic injury in the rat spinal cord: pharmacological evidence for multiple steps in Ca(2+)-dependent injury of the dorsal columns. J Neurotrauma 1997, 14(5): 299–311.

    Article  PubMed  CAS  Google Scholar 

  29. Xiong Y, Rabchevsky AG, Hall ED. Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem 2007, 100(3): 639–649.

    Article  PubMed  CAS  Google Scholar 

  30. Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG. Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 2007, 24(6): 991–999.

    Article  PubMed  Google Scholar 

  31. Casha S, Yu WR, Fehlings MG. FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury. Exp Neurol 2005, 196(2): 390–400.

    Article  PubMed  CAS  Google Scholar 

  32. Austin JW, Fehlings MG. Molecular mechanisms of Fas-mediated cell death in oligodendrocytes. J Neurotrauma 2008, 25(5): 411–426.

    Article  PubMed  Google Scholar 

  33. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985, 312(3): 159–163.

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, Vaccari JP, Wang H, Diaz P, German R, Marcillo AE, et al. Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. J Neurotrauma 2012, 29(5): 936–945.

    Article  PubMed  Google Scholar 

  35. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, et al. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 2001, 24(5): 254–264.

    Article  PubMed  CAS  Google Scholar 

  36. Esposito E, Paterniti I, Mazzon E, Genovese T, Galuppo M, Meli R, et al. MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma. MC Neurosci 2011, 12: 31.

    CAS  Google Scholar 

  37. Simon CM, Sharif S, Tan RP, LaPlaca MC. Spinal cord contusion causes acute plasma membrane damage. J Neurotrauma 2009, 26(4): 563–574.

    Article  PubMed  Google Scholar 

  38. Hollis ER 2nd, Tuszynski MH. Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics 2011, 8(4): 694–703.

    Article  PubMed  CAS  Google Scholar 

  39. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 2000, 14(23): 2919–2937.

    Article  PubMed  CAS  Google Scholar 

  40. Grill RJ, Blesch A, Tuszynski MH. Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol 1997, 148(2): 444–452.

    Article  PubMed  CAS  Google Scholar 

  41. Tuszynski MH, Gabriel K, Gage FH, Suhr S, Meyer S, Rosetti A. Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol 1996, 137(1): 157–173.

    Article  PubMed  CAS  Google Scholar 

  42. Yara T, Kato Y, Kataoka H, Kanchiku T, Suzuki H, Gondo T, et al. Environmental factors involved in axonal regeneration following spinal cord transection in rats. Med Mol Morphol 2009, 42(3): 150–154.

    Article  PubMed  Google Scholar 

  43. Mortazavi MM, Verma K, Deep A, Esfahani FB, Pritchard PR, Tubbs RS, et al. Chemical priming for spinal cord injury: a review of the literature part II-potential therapeutics. Childs Nerv Syst 2011, 27(8): 1307–1316.

    Article  PubMed  Google Scholar 

  44. Oudega M, Hagg T. Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Exp Neurol 1996, 140(2): 218–229.

    Article  PubMed  CAS  Google Scholar 

  45. Fumagalli F, Madaschi L, Brenna P, Caffino L, Marfia G, Di Giulio AM, et al. Single exposure to erythropoietin modulates Nerve Growth Factor expression in the spinal cord following traumatic injury: comparison with methylprednisolone. Eur J Pharmacol 2008, 578(1): 19–27.

    Article  PubMed  CAS  Google Scholar 

  46. Gwak YS, Nam TS, Paik KS, Hulsebosch CE, Leem JW. Attenuation of mechanical hyperalgesia following spinal cord injury by administration of antibodies to nerve growth factor in the rat. Neuro sci Lett 2003, 336(2): 117–120.

    Article  CAS  Google Scholar 

  47. Krenz NR, Meakin SO, Krassioukov AV, Weaver LC. Neutralizing intraspinal nerve growth factor blocks autonomic dysreflexia caused by spinal cord injury. J Neurosci 1999, 19(17): 7405–7414.

    PubMed  CAS  Google Scholar 

  48. Novikova L, Novikov L, Kellerth JO. Brain-derived neurotrophic factor reduces necrotic zone and supports neuronal survival after spinal cord hemisection in adult rats. Neurosci Lett 1996, 220(3): 203–206.

    Article  PubMed  CAS  Google Scholar 

  49. Vavrek R, Girgis J, Tetzlaff W, Hiebert GW, Fouad K. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain 2006, 129 (Pt 6): 1534–1545.

    Article  Google Scholar 

  50. Houweling DA, van Asseldonk JT, Lankhorst AJ, Hamers FP, Martin D, Bär PR, et al. Local application of collagen containing brain-derived neurotrophic factor decreases the loss of function after spinal cord injury in the adult rat. Neurosci Lett 1998, 251(3): 193–196.

    Article  PubMed  CAS  Google Scholar 

  51. Ikeda O, Murakami M, Ino H, Yamazaki M, Nemoto T, Koda M, et al. Acute up-regulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathol 2001, 102(3): 239–245.

    PubMed  CAS  Google Scholar 

  52. Koda M, Murakami M, Ino H, Yoshinaga K, Ikeda O, Hashimoto M, et al. Brain-derived neurotrophic factor suppresses delayed apoptosis of oligodendrocytes after spinal cord injury in rats. J Neurotrauma 2002, 19(6): 777–785.

    Article  PubMed  Google Scholar 

  53. Wang Y, Lü G. Repair of spinal cord injury by neural stem cells transfected with brain-derived neurotrophic factor-green fluorescent protein in rats. Neural Regen Res 2010, 5: 1303–1307.

    CAS  Google Scholar 

  54. Namiki J, Kojima A, Tator CH. Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 2000, 17(12): 1219–1231.

    Article  PubMed  CAS  Google Scholar 

  55. Kim DH, Jahng TA. Continuous brain-derived neurotrophic factor (BDNF) infusion after methylprednisolone treatment in severe spinal cord injury. J Korean Med Sci 2004, 19(1): 113–122.

    Article  PubMed  CAS  Google Scholar 

  56. Zhou L, Baumgartner BJ, Hill-Felberg SJ, McGowen LR, Shine HD. Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J Neurosci 2003, 23(4): 1424–1431.

    PubMed  CAS  Google Scholar 

  57. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 1994, 367(6459): 170–173.

    Article  PubMed  CAS  Google Scholar 

  58. Kusano K, Enomoto M, Hirai T, Tsoulfas P, Sotome S, Shinomiya K, et al. Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury. Biochem Biophys Res Commun 2010, 393(4): 812–817.

    Article  PubMed  CAS  Google Scholar 

  59. Mortazavi MM, Verma K, Tubbs RS, Theodore N. Cellular and paracellular transplants for spinal cord injury: a review of the literature. Childs Nerv Syst 2011, 27(2): 237–243.

    Article  PubMed  Google Scholar 

  60. Eftekharpour E, Karimi-Abdolrezaee S, Fehlings MG. Current status of experimental cell replacement approaches to spinal cord injury. Neurosurg Focus 2008, 24(3–4): E19.

    Article  PubMed  Google Scholar 

  61. Stangel M, Hartung HP. Remyelinating strategies for the treatment of multiple sclerosis. Prog Neurobiol 2002, 68(5): 361–376.

    Article  PubMed  CAS  Google Scholar 

  62. Erceg S, Ronaghi M, Stojković M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 2009, 27(1): 78–87.

    Article  PubMed  CAS  Google Scholar 

  63. Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, et al. Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 2007, 25(8): 1931–1939.

    Article  PubMed  CAS  Google Scholar 

  64. Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 2005, 49(3): 385–396.

    Article  PubMed  Google Scholar 

  65. Rossant J. Stem cells and early lineage development. Cell 2008, 132(4): 527–531.

    Article  PubMed  CAS  Google Scholar 

  66. Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 2008, 26(1): 55–63.

    Article  PubMed  CAS  Google Scholar 

  67. Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One 2008, 3(9): e3145.

    Article  PubMed  Google Scholar 

  68. Glazova M, Pak ES, Moretto J, Hollis S, Brewer KL, Murashov AK. Pre-differentiated embryonic stem cells promote neuronal regeneration by cross-coupling of BDNF and IL-6 signaling pathways in the host tissue. J Neurotrauma 2009, 26(7): 1029–1042.

    Article  PubMed  Google Scholar 

  69. Salewski RP, Eftekharpour E, Fehlings MG. Are induced pluripotent stem cells the future of cell-based regenerative therapies for spinal cord injury? J Cell Physiol 2010, 222(3): 515–521.

    PubMed  CAS  Google Scholar 

  70. Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 1990, 347(6295): 762–765.

    Article  PubMed  CAS  Google Scholar 

  71. Hsu YC, Lee DC, Chiu IM. Neural stem cells, neural progenitors, and neurotrophic factors. Cell Transplant 2007, 16(2): 133–150.

    PubMed  Google Scholar 

  72. Shihabuddin LS, Horner PJ, Ray J, Gage FH. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 2000, 20(23): 8727–8735.

    PubMed  CAS  Google Scholar 

  73. Fricker RA, Carpenter MK, Winkler C, Greco C, Gates MA, Björklund A. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci 1999, 19(14): 5990–6005.

    PubMed  CAS  Google Scholar 

  74. Cao QL, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 2001, 167(1): 48–58.

    Article  PubMed  CAS  Google Scholar 

  75. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 2006, 26(13): 3377–3389.

    Article  PubMed  CAS  Google Scholar 

  76. Seaberg RM, van der Kooy D. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 2002, 22(5): 1784–1793.

    PubMed  CAS  Google Scholar 

  77. Totoiu MO, Keirstead HS. Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol 2005, 486(4): 373–383.

    Article  PubMed  Google Scholar 

  78. Eftekharpour E, Karimi-Abdolrezaee S, Wang J, El Beheiry H, Morshead C, Fehlings MG. Myelination of congenitally dysmyelinated spinal cord axons by adult neural precursor cells results in formation of nodes of Ranvier and improved axonal conduction. J Neurosci 2007, 27(13):3416–3428.

    Article  PubMed  CAS  Google Scholar 

  79. Coutts M, Keirstead HS. Stem cells for the treatment of spinal cord injury. Exp Neurol 2008, 209(2): 368–377.

    Article  PubMed  CAS  Google Scholar 

  80. Davies JE, Huang C, Proschel C, Noble M, Mayer-Proschel M, Davies SJ. Astrocytes derived from glial-restricted precursors promote spinal cord repair. J Biol 2006, 5(3): 7.

    Article  PubMed  Google Scholar 

  81. Kim BG, Hwang DH, Lee SI, Kim EJ, Kim SU. Stem cellbased cell therapy for spinal cord injury. Cell Transplant 2007, 16(4): 355–364.

    PubMed  Google Scholar 

  82. Zhu J, Wu X, Zhang HL. Adult neural stem cell therapy: expansion in vitro, tracking in vivo and clinical transplantation. Curr Drug Targets 2005, 6(1): 97–110.

    Article  PubMed  CAS  Google Scholar 

  83. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008, 321(5893): 1218–1221.

    Article  PubMed  CAS  Google Scholar 

  84. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 2008, 105(15): 5856–5861.

    Article  PubMed  CAS  Google Scholar 

  85. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126(4): 663–676.

    Article  PubMed  CAS  Google Scholar 

  86. Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 2008, 3(6): 587–590.

    Article  PubMed  CAS  Google Scholar 

  87. Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, et al. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 2009, 4(1): 11–15.

    Article  PubMed  CAS  Google Scholar 

  88. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131(5): 861–872.

    Article  PubMed  CAS  Google Scholar 

  89. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318(5858): 1917–1920.

    Article  PubMed  CAS  Google Scholar 

  90. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 2008, 105(8): 2883–2888.

    Article  PubMed  CAS  Google Scholar 

  91. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008, 451(7175): 141–146.

    Article  PubMed  CAS  Google Scholar 

  92. Yamanaka S. A fresh look at iPS cells. Cell 2009, 137(1): 13–17.

    Article  PubMed  CAS  Google Scholar 

  93. Tsuji O, Miura K, Fujiyoshi K, Momoshima S, Nakamura M, Okano H. Cell therapy for spinal cord injury by neural stem/ progenitor cells derived from iPS/ES cells. Neurotherapeutics 2011, 8(4): 668–676.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Qi Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, HQ., Dong, ED. An update on spinal cord injury research. Neurosci. Bull. 29, 94–102 (2013). https://doi.org/10.1007/s12264-012-1277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1277-8

Keywords

Navigation