Skip to main content
Log in

Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Glucose oxidase (GOx) was immobilized onto graphene oxide (GRO) via three different preparation methods: enzyme adsorption (EA), enzyme adsorption and crosslinking (EAC), and enzyme adsorption, precipitation and crosslinking (EAPC). EAPC formulations, prepared via enzyme precipitation with 60% ammonium sulfate, showed 1,980 and 1,630 times higher activity per weight of GRO than those of EA and EAC formulations, respectively. After 59 days at room temperature, EAPC maintained 88% of initial activity, while EA and EAC retained 42 and 45% of their initial activities, respectively. These results indicate that the steps of precipitation and crosslinking in the EAPC formulation are critical to achieve high enzyme loading and stability of EAPC. EA, EAC and EAPC were used to prepare enzyme electrodes for use as glucose biosensors. Optimized EAPC electrode showed 93- and 25-fold higher sensitivity than EA and EAC, respectively. To further increase the sensitivity of EAPC electrode, multi-walled carbon nanotubes (MWCNTs) were mixed with EAPC for the preparation of enzyme electrode. Surprisingly, the EAPC electrode with additional 99.5 wt% MWCNTs showed 7,800-fold higher sensitivity than the EAPC electrode without MWCNT addition. Immobilization and stabilization of enzymes on GRO via the EAPC approach can be used for the development of highly sensitive biosensors as well as to achieve high enzyme loading and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shao, Y. Y., J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. H. Lin (2010) Graphene based electrochemical sensors and biosensors: A review. Electroanal. 22: 1027–1036.

    Article  CAS  Google Scholar 

  2. Allen, M. J., V. C. Tung, and R. B. Kaner (2010) Honeycomb carbon: A review of graphene. Chem. Rev. 110: 132–145.

    Article  CAS  Google Scholar 

  3. Zhu, Y. W., S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff (2010) Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22: 3906–3924.

    Article  CAS  Google Scholar 

  4. Hass, J., W. A. d. Heer, and E. H. Conrad (2008) The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 20: 1–27.

    Google Scholar 

  5. Stoller, M. D., S. Park, Y. Zhu, J. An, and R. S. Ruoff (2008) Graphene-based ultracapacitors. Nano Lett. 8: 3498–3502.

    Article  CAS  Google Scholar 

  6. Yoo, E., J. Kim, E. Hosono, H. -S. Zhou, T. Kudo, and I. Honma (2008) Large Reversible Li Storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8: 2277–2282.

    Article  CAS  Google Scholar 

  7. Yoo, E., T. Okata, T. Akita, M. Kohyama, J. Nakamura, and I. Honma (2009) Enhanced electrocatalytic activity of Pt Subnanoclusters on graphene nanosheet surface. Nano Lett. 9: 2255–2259.

    Article  CAS  Google Scholar 

  8. Lu, C. H., H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen (2009) A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 48: 4785–4787.

    Article  CAS  Google Scholar 

  9. Chen, H., M. B. Muller, K. J. Gilmore, G. G. Wallace, and D. Li (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20: 3557–3561.

    Article  CAS  Google Scholar 

  10. Liu, Z., J. T. Robinson, X. Sun, and H. Dai (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130: 10876–10877.

    Article  CAS  Google Scholar 

  11. Carbone, M., L. Gorton, and R. Antiochia (2015) An overview of the latest graphene-based sensors for glucose detection: The effects of graphene defects. Electroanal. 27: 16–31.

    Article  CAS  Google Scholar 

  12. Liu, F., Y. Piao, K. S. Choi, and T. S. Seo (2012) Fabrication of free-standing graphene composite films as electrochemical biosensors. Carbon 50: 123–133.

    Article  CAS  Google Scholar 

  13. Choi, B. G., H. Park, T. J. Park, M. H. Yang, J. S. Kim, S. Y. Jang, N. S. Heo, S. Y. Lee, J. Kong, and W. H. Hong (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. Acs Nano 4: 2910–2918.

    Article  CAS  Google Scholar 

  14. Li, M. G., S. D. Xu, M. Tang, L. Liu, F. Gao, and Y. L. Wang (2011) Direct electrochemistry of horseradish peroxidase on graphene-modified electrode for electrocatalytic reduction towards H2O2. Electrochim. Acta 56: 1144–1149.

    Article  CAS  Google Scholar 

  15. Zhang, Q., S. J. Yang, J. Zhang, L. Zhang, P. L. Kang, J. H. Li, J. W. Xu, H. Zhou, and X. M. Song (2011) Fabrication of an electrochemical platform based on the self-assembly of graphene oxide-multiwall carbon nanotube nanocomposite and horseradish peroxidase: Direct electrochemistry and electrocatalysis. Nanotechnol. 22: 1–7.

    Article  Google Scholar 

  16. Qiu, J. D., J. Huang, and R. P. Liang (2011) Nanocomposite film based on graphene oxide for high performance flexible glucose biosensor. Sensor. Actuat. B-Chem. 160: 287–294.

    Article  CAS  Google Scholar 

  17. Unnikrishnan, B., S. Palanisamy, and S. -M. Chen (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens. Bioelectron. 39: 70–75.

    Article  CAS  Google Scholar 

  18. Wang, Z. J., X. Z. Zhou, J. Zhang, F. Boey, and H. Zhang (2009) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C 113: 14071–14075.

    Article  CAS  Google Scholar 

  19. Liu, Y., D. S. Yu, C. Zeng, Z. C. Miao, and L. M. Dai (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26: 6158–6160.

    Article  CAS  Google Scholar 

  20. Kim, R. E., S. G. Hong, S. Ha, and J. Kim (2014) Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells. Enz Microb. Technol. 66: 35–41.

    Article  CAS  Google Scholar 

  21. Kim, J. H., S. G. Hong, H. J. Sun, S. Ha, and J. Kim (2016) Precipitated and chemically-crosslinked laccase over polyaniline nanofiber for high performance phenol sensing. Chemosphere 143: 142–147.

    Article  CAS  Google Scholar 

  22. Hong, S. G., H. S. Kim, and J. Kim (2014) Highly stabilized lipase in polyaniline nanofibers for surfactant-mediated esterification of ibuprofen. Langmuir 30: 911–915.

    Article  CAS  Google Scholar 

  23. Kim, H., I. Lee, Y. Kwon, B. C. Kim, S. Ha, J. H. Lee, and J. Kim (2011) Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel cell applications. Biosens. Bioelectron. 26: 3908–3913.

    Article  CAS  Google Scholar 

  24. Bergmeyer, H. U., Gawehn, K., Grassl, M. (1974) Methods of Enzymatic Analysis. Second edn. Academic Press Inc., NY, USA.

    Google Scholar 

  25. Mozhaev, V. V., M. V. Sergeeva, A. B. Belova, and Y. L. Khmelnitsky (1990) Multipoint attachment to a support protects enzyme from inactivation by organic-solvents -alpha-chymotrypsin in aqueous-solutions of alcohols and diols. Biotechnol. Bioeng. 35: 653–659.

    Article  CAS  Google Scholar 

  26. Mozhaev, V. V. (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol. 11: 88–95.

    Article  CAS  Google Scholar 

  27. Mozhaev, V. V., N. S. Melik-nubarov, M. V. Sergeeva, V. Šikšnis, and K. Martinek (1990) Strategy for stabilizing enzymes part one: Increasing stability of enzymes via their multi-point interaction with a support. Biocatal. 3: 179–187.

    Article  CAS  Google Scholar 

  28. Kim, J. H., S. -A. Jun, Y. Kwon, S. Ha, B. -I. Sang, and J. Kim (2015) Enhanced electrochemical sensitivity of enzyme precipitate coating (EPC)-based glucose oxidase biosensors with increased free CNT loadings. Bioelectrochem. 101: 114–119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan S. Dordick or Jungbae Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, SG., Kim, J.H., Kim, R.E. et al. Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors. Biotechnol Bioproc E 21, 573–579 (2016). https://doi.org/10.1007/s12257-016-0373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0373-4

Keywords

Navigation