Skip to main content
Log in

Sequence analysis of KmXYL1 genes and verification of thermotolerant enzymatic activities of xylose reductase from four Kluyveromyces marxianus strains

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Kluyveromyces marxianus has the capability of producing xylitol from xylose because of the endogenous xylose reductase (KmXYL1) gene. In this study, we cloned KmXYL1 genes and compared amino acid sequences of xylose reductase (XR) from four K. marxianus strains (KCTC 7001, KCTC 7155, KCTC 17212, and KCTC 17555). Four K. marxianus strains showed high homologies (99%) of amino acid sequences with those from other reported K. marxianus strains and around 60% homologies with that from Scheffersomyces stipitis. For XR enzymatic activities, four K. marxianus strains exhibited thermostable XR activities up to 45°C and K. marxianus KCTC 7001 showed the highest XR activity. When reaction temperatures were increased from 30 to 45°C, NADH-dependent XR activity from K. marxianus KCTC 7001 was highly increased (46%). When xylitol fermentations were performed at 30 or 45°C, four K. marxianus strains showed very poor xylitol production capabilities regardless fermentation temperatures. Xylitol productions from four K. marxianus strains might be limited because of low xylose uptake rate or cell growth although they have high thermostable XR activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mäkinen, K. (1992) Dietary prevention of dental caries by xylitol-clinical effectiveness and safety. J Appl. Nutr. 44: 16–28.

    Google Scholar 

  2. Hyvonen, L., P. Koivistoinen, and F. Voirol (1982) Food technological evaluation of xylitol. Adv. Food Res. 28: 373–403.

    Article  CAS  Google Scholar 

  3. Sasaki, M., T. Jojima, M. Inui, and H. Yukawa (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biot. 86: 1057–1066.

    Article  CAS  Google Scholar 

  4. Mussatto, S. and I. Roberto (2004) Kinetic behavior of Candida guilliermondii yeast during xylitol production from highly concentrated hydrolysate. Proc. Biochem. 39: 1433–1439.

    Article  CAS  Google Scholar 

  5. Prakash, G., A. Varma, A. Prabhune, Y. Shouche, and M. Rao (2011) Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour. Technol. 102: 3304–3308.

    Article  CAS  Google Scholar 

  6. Rao, R. S., C. P. Jyothi, R. Prakasham, P. Sarma, and L. V. Rao (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour. Technol. 97: 1974–1978.

    Article  CAS  Google Scholar 

  7. Rodrigues, R. C., W. R. Kenealy, and T. W. Jeffries (2011) Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J. Ind. Microbiol. Biot. 38: 1649–1655.

    Article  CAS  Google Scholar 

  8. Sampaio, F. C., V. M. Chaves-Alves, A. Converti, F. M. L. Passos, and J. L. C. Coelho (2008) Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Bioresour. Technol. 99: 502–508.

    Article  CAS  Google Scholar 

  9. Tada, K., J.-I. Horiuchi, T. Kanno, and M. Kobayashi (2004) Microbial xylitol production from corn cobs using Candida magnoliae. J. Biosci. Bioeng. 98: 228–230.

    Article  CAS  Google Scholar 

  10. Vandeska, E., S. Amartey, S. Kuzmanova, and T. Jeffries (1996) Fed-batch culture for xylitol production by Candida boidinii. Proc. Biochem. 31: 265–270.

    Article  CAS  Google Scholar 

  11. Walther, T., P. Hensirisak, and F. A. Agblevor (2001) The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour. Technol. 76: 213–220.

    Article  CAS  Google Scholar 

  12. Oh, E. J., S. -J. Ha, S. R. Kim, W. -H. Lee, J. M. Galazka, J. H. Cate, and Y. -S. Jin (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab. Eng. 15: 226–234.

    Article  CAS  Google Scholar 

  13. Zhang, B., L. Li, J. Zhang, X. Gao, D. Wang, and J. Hong (2013) Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J. Ind. Microbiol. Biot. 40: 305–316.

    Article  CAS  Google Scholar 

  14. Zhang, B., L. Zhang, D. Wang, X. Gao, and J. Hong (2011) Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777. J. Ind. Microbiol. Biot. 38: 2001–2010.

    Article  CAS  Google Scholar 

  15. Jang, S. -W., J. -S. Kim, J. -B. Park, J. -H. Jung, C. -S. Park, W. C. Shin, and S. -J. Ha (2015) Characterization of the starch degradation activity from newly isolated Rhizopus oryzae WCS-1 and mixed cultures with Saccharomyces cerevisiae for efficient ethanol production from starch. Food Sci. Biot. 24: 1805–1810.

    Article  CAS  Google Scholar 

  16. Park, J. -B., J. -S. Kim, S. -W. Jang, E. Hong, and S. -J. Ha (2015) The application of thermotolerant yeast Kluyveromyces marxianus as a potential industrial workhorse for biofuel production. KSBB J. 30: 125–131.

    Article  Google Scholar 

  17. Zhang, J., B. Zhang, D. Wang, X. Gao, and J. Hong (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour. Technol. 152: 192–201.

    Article  CAS  Google Scholar 

  18. Kim, J. -S., J. -B. Park, S. -W. Jang, and S. -J. Ha (2015) Enhanced xylitol production by mutant Kluyveromyces marxianus 36907-FMEL1 due to improved xylose reductase activity. Appl. Biochem. Biot. 176: 1975–1984.

    Article  CAS  Google Scholar 

  19. Rodrussamee, N., N. Lertwattanasakul, K. Hirata, S. Limtong, T. Kosaka, and M. Yamada (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl. Microbiol. Biot. 90: 1573–1586.

    Article  CAS  Google Scholar 

  20. Morton, R. E. and T. A. Evans (1992) Modification of the bicinchoninic acid protein assay to eliminate lipid interference in determining lipoprotein protein content. Anal. Biochem. 204: 332–334.

    Article  CAS  Google Scholar 

  21. Boontham, W., N. Srisuk, K. Kokaew, P. Treeyoung, S. Limtong, A. Thamchaipenet, and H. Yurimoto (2014) Xylitol production by thermotolerant methylotrophic yeast Ogataea siamensis and its xylose reductase gene (XYL1) cloning. Chiang Mai J. Sci. 41: 491–502.

    Google Scholar 

  22. Zeng, Q. -K., H. -L. Du, J. F. Wang, D. -Q. Wei, X. -N. Wang, Y. -X. Li, and Y. Lin (2009) Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis. Biotechnol. Lett. 31: 1025–1029.

    Article  CAS  Google Scholar 

  23. Zhang, F., D. Qiao, H. Xu, C. Liao, S. Li, and Y. Cao (2009) Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis. The J. Microbiol. 47: 351–357.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Jin Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JB., Kim, JS., Jang, SW. et al. Sequence analysis of KmXYL1 genes and verification of thermotolerant enzymatic activities of xylose reductase from four Kluyveromyces marxianus strains. Biotechnol Bioproc E 21, 581–586 (2016). https://doi.org/10.1007/s12257-016-0363-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0363-6

Keywords

Navigation