Skip to main content
Log in

Optimization of phage λ promoter strength for synthetic small regulatory RNA-based metabolic engineering

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Synthetic small regulatory RNAs (sRNAs) are gene-silencing tools that can be used to tune gene expression in prokaryotes. A recent study by our group proposed rational design principles, introduced a regulatory system that may be used to implement synthetic sRNAs, and showed their utility in metabolic engineering. The regulatory system employed the strong phage λ PR promoter to tightly control synthetic sRNA production. Here, we fine-tuned the strength of the PR promoter via mutagenesis in order to optimize the level of synthetic sRNAs while maintaining the ability of the promoter to be regulated by CI proteins. Five mutant promoters of different strengths, ranging from 24 to 87% of that of the wild-type PR promoter, were identified and confirmed to be repressed by CI proteins. A mutated promoter with only 40% of the original strength still produced enough synthetic sRNAs to inhibit the translation of the target mRNA to ~10% of the original level. As a practical application, we tested our promoters as drivers for a synthetic anti-murE sRNA, which was used to adjust the production of cadaverine. As the promoter strength decreased, the cadaverine titer first increased and then dropped. A mutated promoter with 39% of the original strength achieved the improved cadaverine titer of 2.15 g/L. The mutant promoters developed in this study should prove useful for tuning the expression levels of synthetic sRNAs for metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Na, D., T. Y. Kim, and S. Y. Lee (2010) Construction and optimization of synthetic pathways in metabolic engineering. Curr. Opin. Microbiol. 13: 363–370.

    Article  CAS  Google Scholar 

  2. Wang, H. H., F. J. Isaacs, P. A. Carr, Z. Z. Sun, G. Xu, C. R. Forest, and G. M. Church (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894–898.

    Article  CAS  Google Scholar 

  3. Smolke, C. (2009) The Metabolic Pathway Engineering Handbook: Tools and Applications. CRC Press, Boca Raton, USA.

    Book  Google Scholar 

  4. Nevoigt, E., J. Kohnke, C. R. Fischer, H. Alper, U. Stahl, and G. Stephanopoulos (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72: 5266–5273.

    Article  CAS  Google Scholar 

  5. Jones, K. L., S. W. Kim, and J. D. Keasling (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2: 328–338.

    Article  CAS  Google Scholar 

  6. Ajikumar, P. K., W.-H. Xiao, K. E. J. Tyo, Y. Wang, F. Simeon, E. Leonard, O. Mucha, T. H. Phon, B. Pfeifer, and G. Stephanopoulos (2010) Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli. Scie. 330: 70–74.

    Article  CAS  Google Scholar 

  7. Hubmann, G., J. M. Thevelein, and E. Nevoigt (2014) Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. pp. 17–42. In: V. Mapelli (ed.). Yeast Metabolic Engineering: Methods and Protocols. Humana Press, NY, USA.

  8. Pfleger, B. F., D. J. Pitera, C. D. Smolke, and J. D. Keasling (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol. 24: 1027–1032.

    Article  CAS  Google Scholar 

  9. Na, D., S. M. Yoo, H. Chung, H. Park, J. H. Park, and S. Y. Lee (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170–174.

    Article  CAS  Google Scholar 

  10. Sandoval, N. R., J. Y. Kim, T. Y. Glebes, P. J. Reeder, H. R. Aucoin, J. R. Warner, and R. T. Gill (2012) Strategy for directing combinatorial genome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA. 109: 10540–10545.

    Article  CAS  Google Scholar 

  11. Sharon, E., Y. Kalma, A. Sharp, T. Raveh-Sadka, M. Levo, D. Zeevi, L. Keren, Z. Yakhini, A. Weinberger, and E. Segal (2012) Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30: 521–530.

    Article  CAS  Google Scholar 

  12. De Mey, M., J. Maertens, G. J. Lequeux, W. K. Soetaert, and E. J. Vandamme (2007) Construction and model-based analysis of a promoter library for E. coli: An indispensable tool for metabolic engineering. BMC Biotechnol. 7:34.

    Article  Google Scholar 

  13. Anthony, J. R., L. C. Anthony, F. Nowroozi, G. Kwon, J. D. Newman, and J. D. Keasling (2009) Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab. Eng. 11: 13–19.

    Article  CAS  Google Scholar 

  14. Na, D., S. Lee, and D. Lee (2010) Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes. BMC Syst. Biol. 4:71.

    Article  Google Scholar 

  15. Salis, H. M., E. A. Mirsky, and C. A. Voigt (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27: 946–950.

    Article  CAS  Google Scholar 

  16. Juminaga, D., E. E. Baidoo, A. M. Redding-Johanson, T. S. Batth, H. Burd, A. Mukhopadhyay, C. J. Petzold, and J. D. Keasling (2012) Modular engineering of L-tyrosine production in Escherichia coli. Appl. Environ. Microbiol. 78: 89–98.

    Article  CAS  Google Scholar 

  17. Jin, Y., J. Wu, Y. Li, Z. Cai, and J.-D. Huang (2013) Modification of the RpoS network with a synthetic small RNA. Nucleic Acids Res. 41: 8332–8340.

    Article  CAS  Google Scholar 

  18. Park, H., G. Bak, S. C. Kim, and Y. Lee (2013) Exploring sRNAmediated gene silencing mechanisms using artificial small RNAs derived from a natural RNA scaffold in Escherichia coli. Nucleic Acids Res. 41: 3787–3804.

    Article  CAS  Google Scholar 

  19. Bak, G., J. S. Choi, W. Kim, S. Suk, and Y. Lee (2015) An effective method for specific gene silencing in Escherichia coli using artificial small RNA. pp. 211–225. In: L. Ponchon (ed.). RNA Scaffolds: Methods and Protocols. Springer New York, NY, USA.

  20. Argaman, L., R. Hershberg, J. Vogel, G. Bejerano, E. G. Wagner, H. Margalit, and S. Altuvia (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 11: 941–950.

    Article  CAS  Google Scholar 

  21. Vogel, J. and E. G. Wagner (2007) Target identification of small noncoding RNAs in bacteria. Curr. Opin. Microbiol. 10: 262–270.

    Article  CAS  Google Scholar 

  22. Moll, I., T. Afonyushkin, O. Vytvytska, V. R. Kaberdin, and U. Blasi (2003) Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA. 9: 1308–1314.

    Article  CAS  Google Scholar 

  23. Aiba, H. (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Curr. Opin. Microbiol. 10: 134–139.

    Article  CAS  Google Scholar 

  24. Yoo, S. M., D. Na, and S. Y. Lee (2013) Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nat. Protoc. 8: 1694–1707.

    Article  CAS  Google Scholar 

  25. Liu, Y., Y. Zhu, J. Li, H. D. Shin, R. R. Chen, G. Du, L. Liu, and J. Chen (2014) Modular pathway engineering of Bicillus subtilis for improved N-acetylglucosamine production. Metab. Eng. 23: 42–52.

    Article  CAS  Google Scholar 

  26. Kim, B., H. Park, D. Na, and S. Y. Lee (2014) Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol. J. 9: 621–629.

    Article  CAS  Google Scholar 

  27. Jana, N. K., S. Roy, B. Bhattacharyya, and N. C. Mandal (1999) Amino acid changes in the repressor of bacteriophage lambda due to temperature-sensitive mutations in its cI gene and the structure of a highly temperature-sensitive mutant repressor. Protein Eng. 12: 225–233.

    Article  CAS  Google Scholar 

  28. Qian, Z. G., X. X. Xia, and S. Y. Lee (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine. Biotechnol. Bioeng. 108: 93–103.

    Article  CAS  Google Scholar 

  29. Maquat, L. E., K. Thornton, and W. S. Reznikoff (1980) lac Promoter mutations located downstream from the transcription start site. J. Mol. Biol. 139: 537–549.

    Article  CAS  Google Scholar 

  30. Brown, S., J. Ferm, S. Woody, and G. Gussin (1990) Selection for mutations in the PR promoter of bacteriophage lambda. Nucleic Acids Res. 18: 5961–5967.

    Article  CAS  Google Scholar 

  31. Kind, S., W. K. Jeong, H. Schroder, and C. Wittmann (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab. Eng. 12: 341–351.

    Article  CAS  Google Scholar 

  32. Mimitsuka, T., H. Sawai, M. Hatsu, and K. Yamada (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci. Biotechnol. Biochem. 71: 2130–2135.

    Article  CAS  Google Scholar 

  33. Gordon, E., B. Flouret, L. Chantalat, J. van Heijenoort, D. Mengin-Lecreulx, and O. Dideberg (2001) Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: Meso-diaminopimelate ligase from Escherichia coli. J. Biol. Chem. 276: 10999–11006.

    Article  CAS  Google Scholar 

  34. Mengin-Lecreulx, D., B. Flouret, and J. van Heijenoort (1982) Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli. J. Bacteriol. 151: 1109–1117.

    CAS  Google Scholar 

  35. Michaud, C., D. Mengin-Lecreulx, J. van Heijenoort, and D. Blanot (1990) Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramoyl-L-alanyl-D-glutamate: Meso-2,6-diaminopimelate ligase from Escherichia coli. Eur. J. Biochem. 194: 853–861.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Yup Lee or Dokyun Na.

Additional information

These authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, M., Yoo, S.M., Jun, R. et al. Optimization of phage λ promoter strength for synthetic small regulatory RNA-based metabolic engineering. Biotechnol Bioproc E 21, 483–490 (2016). https://doi.org/10.1007/s12257-016-0245-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0245-y

Keywords

Navigation