Skip to main content
Log in

PCR-DGGE and real-time PCR dsrB-based study of the impact of heavy metals on the diversity and abundance of sulfate-reducing bacteria

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Sulfate-reducing bacteria (SRB) are widely used for heavy metal (HM) treatment in bioreactors but their growth and biological activity can be inhibited by such treatment. Here, bioreactor experiments were used to investigate changes in the SRB community and the copy number of the dissimilatory sulfite reductase β-subunit functional gene (dsrB) under high doses of sulfates and HMs. The SRB community was investigated using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing techniques, while the dsrB gene abundance was measured by quantitative real-time PCR (qRT-PCR). The sulfate reduction rate was initially much higher in reactors without HMs than in those containing HMs (p = 0.001). Sulfate levels were reduced by 50% within the first 3 days of operation. As a result, the HM removal rate was initially much lower in the reactors containing HMs. Most of the HMs reduced to safe limits within 9 ~ 12 days of operation. The SRB community mainly consisted of Desulfovibrio vulgaris, D. termitidis, D. desulfuricans, D. simplex and Desulfomicrobium baculatum, as determined by PCR-DGGE. qRT-PCR revealed a decreasing trend in the copy numbers of a functional gene (dsrB) after 6 days in samples lacking HMs; however, the opposite trend was observed in the HM-containing samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berghorn, G. H. and G. R. Hunzeker (2001) Passive treatment alternatives for remediating abandoned-mine drainage. Remed. J. 11: 111–127.

    Article  Google Scholar 

  2. Waybrant, K. R., C. J. Ptacek, and D. W. Blowes (2002) Treatment of mine drainage using permeable reactive barriers: Column experiments. Environ. Sci. Technol. 36: 1349–1356.

    Article  CAS  Google Scholar 

  3. Hiibel, S. R., L. P. Pereyra, L. Y. Inman, A. Tischer, D. J. Reisman, K. F. Reardon, and A. Pruden (2008) Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage. Environ. Microbiol. 10: 2087–2097.

    Article  CAS  Google Scholar 

  4. Johnson, D. B. and K. B. Hallberg (2005) Acid mine drainage remediation options: A review. Sci. Total Environ. 338: 3–14.

    Article  CAS  Google Scholar 

  5. Fang, H. H. P., L.-C. Xu, and K.-Y. Chan (2002) Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res. 36: 4709–4716.

    Article  CAS  Google Scholar 

  6. Hao, O. J., L. Huang, J. M. Chen, and R. L. Buglass (1994) Effects of metal additions on sulfate reduction activity in wastewaters. Toxicol. Environ. Chem. 46: 197–212.

    Article  CAS  Google Scholar 

  7. Poulson, S. R., P. J. S. Colberg and J. I. Drever (1997) Toxicity of heavy metals (Ni, Zn) to desulfovibrio desulfuricans. Geomicrobiol. J. 14: 41–49.

    Article  CAS  Google Scholar 

  8. Alvarez, M. T., C. Crespo, and B. Mattiasson (2007) Precipitation of Zn (II), Cu (II) and Pb (II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere. 66: 1677–1683.

    Article  CAS  Google Scholar 

  9. Jiménez-Rodríguez, A. M., M. M. Durán-Barrantes, R. Borja, E. Sánchez, M. F. Colmenarejo, and F. Raposo (2009) Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH. J. Hazard. Mater. 165: 759–765.

    Article  Google Scholar 

  10. Çetin, D., S. Dönmez, and G. Dönmez (2008) The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment. J. Environ. Manage. 88: 76–82.

    Article  Google Scholar 

  11. Tebo, B. M. and A. Y. Obraztsova (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol. Lett. 162: 193–198.

    Article  CAS  Google Scholar 

  12. Geets, J., K. Vanbroekhoven, B. Borremans, J. Vangronsveld, L. Diels, and D. van der Lelie (2006) Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Environ. Sci. Pollut. Res. 13: 362–378.

    Article  CAS  Google Scholar 

  13. Rogers, S. and N. McClure (2003) The role of microbiological studies in bioremediation process optimization. pp. 27–59. Im, H. S. I. and M. Mg (eds.)., Bioremediation: A critical review. Horizon Scientific Press, Wymondham, UK.

    Google Scholar 

  14. Mackie, R. I., P. G. Stroot, and V. H. Varel (1998) Biochemical identification and biological origin of key odor components in livestock waste. J. Anim. Sci. 76: 1331–1342.

    CAS  Google Scholar 

  15. Spence, C., T. R. Whitehead, and M. A. Cotta (2008) Development and comparison of SYBR Green quantitative real-time PCR assays for detection and enumeration of sulfate-reducing bacteria in stored swine manure. J. Appl. Microbiol. 105: 2143–2152.

    Article  CAS  Google Scholar 

  16. Kjeldsen, K. U., A. Loy, T. F. Jakobsen, T. R. Thomsen, M. Wagner, and K. Ingvorsen (2007) Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol. Ecol. 60: 287–298.

    Article  CAS  Google Scholar 

  17. Kondo, R., D. B. Nedwell, K. J. Purdy, and S. Q. Silva (2004) Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol. J. 21: 145–157.

    Article  CAS  Google Scholar 

  18. Leloup, J., A. Loy, N. J. Knab, C. Borowski, M. Wagner, and B. B. Jorgensen (2007) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ. Microbiol. 9: 131–142.

    Article  CAS  Google Scholar 

  19. Pérez-Jiménez, J. R., L. Y. Young, and L. J. Kerkhof (2001) Molecular characterization of sulfate-reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures using the dissimilatory sulfite reductase (dsrAB) genes. FEMS Microbiol. Ecol. 35: 145–150.

    Article  Google Scholar 

  20. Foti, M., D. Y. Sorokin, B. Lomans, M. Mussman, E. E. Zacharova, N. V. Pimenov, J. G. Kuenen, and G. Muyzer (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl. Environ. Microbiol. 73: 2093–2100.

    Article  CAS  Google Scholar 

  21. Minz, D., J. L. Flax, S. J. Green, G. Muyzer, Y. Cohen, M. Wagner, B. E. Rittmann, and D. A. Stahl (1999) Diversity of sulfatereducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 65: 4666–4671.

    CAS  Google Scholar 

  22. Dhillon, A., A. Teske, J. Dillon, D. A. Stahl, and M. L. Sogin (2003) Molecular characterization of sulfate-reducing bacteria in the guaymas basin. Appl. Environ. Microbiol. 69: 2765–2772.

    Article  CAS  Google Scholar 

  23. Wagner, M., A. J. Roger, J. L. Flax, G. A. Brusseau, and D. A. Stahl (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180: 2975–2982.

    CAS  Google Scholar 

  24. Atlas, R. M. (2005) Handbook of Media for Environmental Microbiology. CRC Press, Taylor & Francis Group., Boca Raton, FL, USA.

    Book  Google Scholar 

  25. APHA, AWWA and WEF (1998) Standard Methods for the Examination of Water and Wastewater. p.1325. 20th ed. American Public Health Association, Washington D. C., USA.

    Google Scholar 

  26. Dar, S. A., L. Yao, U. van Dongen, J. G. Kuenen, and G. Muyzer (2007) Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl. Environ. Microbiol. 73: 594–604.

    Article  CAS  Google Scholar 

  27. Chervoneva, I., T. Hyslop, B. Iglewicz, L. Johns, H. R. Wolfe, S. Schulz, E. Leong, and S. Waldman (2006) Statistical algorithm for assuring similar efficiency in standards and samples for absolute quantification by real-time reverse transcription polymerase chain reaction. Anal. Biochem. 348: 198–208.

    Article  CAS  Google Scholar 

  28. Perry, R. H. and D. W. Green (2008) Perry’s Chemical Engineers’ Handbook. 8th Edition, McGraw-Hill.

    Google Scholar 

  29. O’Flaherty, V. and E. Colleran (1999) Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor. I: Process disturbance and remediation. Bioresour. Technol. 68: 101–107.

    Google Scholar 

  30. MEP (2002) Environmental quality standard for surface water. GB 3838-2002, Ministry of Environmental Protection, P. R. China.

    Google Scholar 

  31. Shuttleworth, K. L. and R. F. Unz (1991) Influence of metals and metal speciation on the growth of filamentous bacteria. Water Res. 25: 1177–1186.

    Article  Google Scholar 

  32. Al-Zuhair, S., M. H. El-Naas and H. Al-Hassani (2008) Sulfate inhibition effect on sulfate reducing bacteria. J. Biochem. Technol. 1: 39–44.

    Google Scholar 

  33. Kirchman, D. L. and J. H. Rich (1997) Regulation of bacterial growth rates by dissolved organic carbon and temperature in the equatorial pacific ocean. Microb. Ecol. 33: 11–20.

    Article  Google Scholar 

  34. Rzeczycka, M. and M. Blaszczyk (2005) Growth and activity of aulphate-reducing bacteria in media containing phosphogypsum and different sources of carbon. Pol. J. Environ. Stud. 14: 891–895.

    CAS  Google Scholar 

  35. Zhang, W., L. S. Song, J. S. Ki, C. K. Lau, X. D. Li, and P. Y. Qian (2008) Microbial diversity in polluted harbor sediments II: Sulfate-reducing bacterial community assessment using terminal restriction fragment length polymorphism and clone library of dsrAB gene. Estuar. Coast Shelf Sci. 76: 682–691.

    Article  Google Scholar 

  36. Cabrera, G., R. Perez, J. M. Gomez, A. Abalos, and D. Cantero (2006) Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J. Hazard. Mater. 135: 40–46.

    Article  CAS  Google Scholar 

  37. Quillet, L., L. Besaury, M. Popova, S. Paisse, J. Deloffre, and B. Ouddane (2012) Abundance, diversity and activity of sulfatereducing prokaryotes in heavy metalcontaminated sediment from a salt marsh in the Medway Estuary (UK). Mar. Biotechnol. 14: 363–381.

    Article  CAS  Google Scholar 

  38. Lloyd, J. R., A. N. Mabbett, D. R. Williams, and L. E. Macaskie (2001) Metal reduction by sulphate-reducing bacteria: Physiological diversity and metal specificity Hydrometal. 59: 327–337.

    Article  CAS  Google Scholar 

  39. Andrade, L. L., D. Leite, E. Ferreira, L. Ferreira, G. R. Paula, M. Maguire, and C. R. Hubert (2012) Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment. BMC Microbiol. 12: 186.

    Article  CAS  Google Scholar 

  40. Varon-Lopez, M., A. C. F. Dias, C. C. Fasanella, A. Durrer, I. S. Melo, E. E. Kuramae, and F. D. Andreote (2013) Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments. Environ. Microbiol. doi:10.1111/1462-2920.12237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Islamud-Din or Abd El-Latif Hesham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islamud-Din, Hesham, A.EL., Ahmad, A. et al. PCR-DGGE and real-time PCR dsrB-based study of the impact of heavy metals on the diversity and abundance of sulfate-reducing bacteria. Biotechnol Bioproc E 19, 703–710 (2014). https://doi.org/10.1007/s12257-014-0324-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0324-x

Keywords

Navigation