Skip to main content
Log in

Highly retained enzymatic activities of two different cellulases immobilized on non-porous and porous silica particles

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Efficient biological degradation of lignocellulosic biomass is a key step towards developing sustainable biorefineries. One potential approach to improve process efficiency is the use of enzyme immobilization to facilitate reuse of the enzymes. Two different commercial cellulase containing enzyme preparations, termed Cellulases 1 (C1) and Cellulases 2 (C2) for the purposes of this manuscript, were separately immobilized on non-porous silica (S1) and porous silica (S2). The effect of pH, ionic strength and enzyme loading on enzyme stability and activity were all investigated. Immobilized cellulases on S1 showed equivalent enzyme activity as free cellulases, and those on S2 retained 60% enzyme activity. Dissociation of the cellulases from the support after immobilization and during hydrolysis was found to be minimal, suggesting strong enzyme-support interactions. Further, Scanning Electron Microscopy images revealed that S1 and S2 containing immobilized cellulases differentially interact with cellulose, which likely contributes to the observed differences in hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Koutinas, A. A., C. Du, and R. H. Wang (2008) Production of chemicals from biomass. pp. 77–101. In: J. Clark and F. Deswarte (eds.). Introduction to Chemicals from Biomass. John Wiley, A John Wiley & Sons, Ltd., Cornwall, UK.

    Chapter  Google Scholar 

  2. Wall, J. D., C. S. Harwood, and A. Demain (2008) Bioenergy. ASM Press, VA, USA.

    Google Scholar 

  3. Turley, D. B. (2008) The chemical value of biomass. pp. 21–46. In: J. Clark and F. Deswarte (eds.). Introduction to Chemicals from Biomass. John Wiley, A John Wiley & Sons, Ltd., Cornwall, UK.

    Chapter  Google Scholar 

  4. Cao, L. (2005) Adsorption-based Immobilization, Carrier-bound Immobilized Enzymes pp. 53–54. 1st ed. WILEY-VCH Verlag GmbH & Co. KGaA, Morlenbach, Germany.

    Book  Google Scholar 

  5. Dinçer, A. and A. Telefoncu (2007) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J. Mol. Catal. B- Enz. 45: 10–14.

    Article  Google Scholar 

  6. Mousdale, D. M. (2008) Biofuels: Biotechnology, Chemistry, and Sustainable Development. CRC Press, Taylor & Francis Group, LLC., FL, USA.

    Book  Google Scholar 

  7. Yang, S., W. Ding, and H. Chen (2009) Enzymatic hydrolysis of corn stalk in a hollow fiber ultrafiltration membrane reactor. Biomass Bioenerg. 33: 332–336.

    Article  CAS  Google Scholar 

  8. Hartono, S. B., S. Z. Qiao, J. Liu, K. Jack, B. P. Ladewig, Z. Hao, and G. Q. M. Lu (2010) Functionalized mesoporous silica with very large pores for cellulase immobilization. J. Phys. Chem. C. 114: 8353–8362.

    Article  CAS  Google Scholar 

  9. Iler, R. K. (1979) Polymerization of Silica, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry. pp. 174–175. A Wiley-Interscience Publication/John Wiley & Sons, Cornwall, UK.

    Google Scholar 

  10. Cruz, J. C., P. H. Pfromm, and M. E. Rezac (2009) Immobilization of Candida antarctica lipase B on fumed silica. Proc. Biochem. 44: 62–69.

    Article  CAS  Google Scholar 

  11. Ikeda, Y. (2013) Cellulase immobilizations with highly retained enzymatic activities. Ph. D. Thesis. University of Alberta, Edmonton, Alberta, Canada.

    Google Scholar 

  12. Ghose, T. K. (1987) Measurement of cellulase activities. Pure Appl. Chem. 59: 257–268.

    CAS  Google Scholar 

  13. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  14. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  15. Zhu, L., J. P. O’Dwyer, V. S. Chang, C. B. Granda, and M. T. Holtzapple (2008) Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99: 3817–3828.

    Article  CAS  Google Scholar 

  16. Tébéka, I. R. M., A. G. L. Silva, and D. F. S. Petti (2009) Hydrolytic activity of free and immobilized cellulase. Langmuir 25: 1582–1587.

    Article  Google Scholar 

  17. Henriksson, H., J. Ståhlberg, R. Isaksson, and G. Pettersson (1996) The active sites of cellulases are involved in chiral recognition: A comparison of cellobiohydrolase 1 and endoglucanase 1. FEBS Lett. 390: 339–344.

    Article  CAS  Google Scholar 

  18. Takimoto, A., T. Shiomi, K. Ino, T. Tsunoda, A. Kawai, F. Mizukami, and K. Sakaguchi (2008) Encapsulation of cellulase with mesoporous silica (SBA-15). Micropor. Mesopor. Mat. 116: 601–606.

    Article  CAS  Google Scholar 

  19. Chang, R. H. Y., J. Jang, and K. C. W. Wu (2011) Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose- to-glucose conversion. Green Chem. 13: 2844–2850.

    Article  CAS  Google Scholar 

  20. Tamaru, Y., H. Miyake, K. Kuroda, M. Ueda, and R. H. Doi (2010) Comparative genomics of the mesophilic cellulosome-producing clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing. Environ. Technol. 31: 889–903.

    Article  CAS  Google Scholar 

  21. Park, E. Y., P. N. Anh, and N. Okuda (2004) Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae. Bioresour. Technol. 93: 77–83.

    Article  CAS  Google Scholar 

  22. Liang, W. and X. Cao (2012) Preparation of a pH-sensitive polyacrylate amphiphilic copolymer and its application in cellulase immobilization. Bioresour. Technol. 116: 140–146.

    Article  CAS  Google Scholar 

  23. Yu, A., J. Yuan, Q. Wang, X. Fan, P. Wang, and X. Sun (2012) Covalent immobilization of cellulases onto a water-soluble-insoluble reversible polymer. Biochem. Biotechnol. 166: 1433–1441.

    Article  CAS  Google Scholar 

  24. Alahakoon, T., J. W. Koh, X. W. C. Chong, and W. T. L. Lim (2012) Immobilization of cellulases on amine and aldehyde functionalized Fe2O3 magnetic nanoparticles. Prep. Biochem. Biotechnol. 42: 234–248.

    Article  CAS  Google Scholar 

  25. Zhang, Y., J. L. Xu, Z. H. Yuan, W. Qi, Y. Liu, and M. C. He (2012) Artificial intelligence techniques to optimize the EDC/NHS-mediated immobilization of cellulase on Eudragit L-100. Int. J. Mol. Scis. 13: 7952–7962.

    Article  CAS  Google Scholar 

  26. Xu, Z., Y. Miao, J. Y. Chen, X. Jiang, L. Lin, and P. Ouyang (2011) Co-immobilization mechanism of cellulase and xylanase on a reversibly soluble polymer. Appl. Biochem. Biotechnol. 163: 153–161.

    Article  CAS  Google Scholar 

  27. Xu, J., S. Huo, Z. Yuan, Y. Zhang, H. Xu, Y. Guo, C. Liang, and X. Zhuang (2011) Characterization of direct cellulase immobilization with super paramagnetic nanoparticles. Biocatal. Biotransfor. 29: 71–76.

    Article  CAS  Google Scholar 

  28. Zhou, J. (2010) Immobilization of cellulase on a reversibly soluble- insoluble support: Properties and application. J. Agr. Food Chem. 58: 6741–6746.

    Article  CAS  Google Scholar 

  29. Liao, H., D. Chen, L. Yuan, M. Zheng, Y. Zhu, and X. Liu (2010) Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohyd. Polym. 82: 600–604.

    Article  CAS  Google Scholar 

  30. Afsahi, B., A. Kazemi, A. Kheirolomoom, and S. Nejati (2007) Immobilization of cellulase on non-porous ultrafine silica particles. Sci. Iran. 14: 379–383.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Bressler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, Y., Parashar, A. & Bressler, D.C. Highly retained enzymatic activities of two different cellulases immobilized on non-porous and porous silica particles. Biotechnol Bioproc E 19, 621–628 (2014). https://doi.org/10.1007/s12257-014-0191-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0191-5

Keywords

Navigation