Skip to main content
Log in

Radiation-induced biomimetic modification of dual-layered nano/microfibrous scaffolds for vascular tissue engineering

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

One of the interesting strategies for developing the artificial blood vessels is to generate multi-layered scaffolds for mimicking the structure of native blood vessels such as the intima, media, and adventitia. In this study, we prepared dual-layered poly(L-lactide-co-ɛ-caprolactone) (PLCL) scaffolds with micro- and nanofibers as a basic construct of the vessel using electrospinning methods, which was functionalized using a gelatin through acrylic acid (AAc) grafting by γ-ray irradiation. Based on the microfibrous platform (fiber diameter 5 μm), the thickness of the nanofibrous layer (fiber diameter 700 nm) was controlled from 1.1 ± 0.8 to 32.2 ± 1.7 μm, and the mechanical property of the scaffolds was almost maintained despite the increase in thickness of the nanofibrous layer. The successful AAc graft by γ-ray irradiation could allow the gelatin immobilization on the scaffolds. The proliferation of smooth muscle cells (SMC) on the scaffolds toward a microfibrous layer was approximately 1.3-times greater than in the other groups, and the infiltration was significantly increased, presenting a wide cell distribution in the cross-section. In addition, human umbilical vein endothelial cell (HUVEC) adhesion toward nanofibrous layer was well-managed over the entire surface, and the accelerated proliferation was observed on the gelatin-functionalized scaffolds presenting the well-organized gap-junctions. Therefore, our biomimetic dual-layered scaffolds may be the alternative tools for replacing the damaged blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stegemann, J. P., S. N. Kaszuba, and S. L. Rowe (2007) Review: Advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng. 13: 2601–2613.

    Article  CAS  Google Scholar 

  2. Stone, G. W., S. G. Ellis, D. A. Cox, J. Hermiller, C. O’Shaughnessy, J. T. Mann, M. Turco, R. Caputo, P. Bergin, J. Greenberg, J. J. Popma, and M. E. Russell (2004) A Polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. New England J. Med. 350: 221–231.

    Article  CAS  Google Scholar 

  3. Whitlow, P. L. and K. I. Muhammad (2011) Chronic total coronary occlusion percutaneous interventionthe case for randomized trials. JACC: Cardiovascular Interventions. 4: 962–964.

    Article  Google Scholar 

  4. Begovac, P. C., R. C. Thomson, J. L. Fisher, A. Hughson, and A. Gällhagen (2003) Improvements in GORE-TEX® vascular graft performance by Carmeda® BioActive surface heparin immobilization. Eur. J. Vasc. Endo. Sur. 25: 432–437.

    Article  CAS  Google Scholar 

  5. Isenberg, B. C., C. Williams, and R. T. Tranquillo (2006) Smalldiameter artificial arteries engineered in vitro. Circ. Res. 98: 25–35.

    Article  CAS  Google Scholar 

  6. Shalumon, K. T., P. R. Sreerekha, D. Sathish, H. Tamura, S. V. Nair, K. P. Chennazhi, and R. Jayakumar (2011) Hierarchically designed electrospun tubular scaffolds for cardiovascular applications. J. Biomed. Nanotech. 7: 609–620.

    Article  CAS  Google Scholar 

  7. Ju, Y. M., J. S. Choi, A. Atala, J. J. Yoo, and S. J. Lee (2010) Bilayered scaffold for engineering cellularized blood vessels. Biomat. 31: 4313–4321.

    Article  CAS  Google Scholar 

  8. Han, F., X. Jia, D. Dai, X. Yang, J. Zhao, Y. Zhao, Y. Fan, and X. Yuan (2013) Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Biomat. 34: 7302–7313.

    Article  CAS  Google Scholar 

  9. Park, H., K. Y. Lee, S. J. Lee, K. E. Park, and W. H. Park (2007) Plasma-treated poly(lactic-co-glycolic acid) nanofibers for tissue engineering. Macromol. Res. 15: 238–243.

    Article  CAS  Google Scholar 

  10. Park, G. E., M. A. Pattison, K. Park, and T. J. Webster (2005) Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomat. 26: 3075–3082.

    Article  CAS  Google Scholar 

  11. Zhu, Y., C. Gao, X. Liu, T. He, and J. Shen (2004) Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng. 10: 53–61.

    Article  CAS  Google Scholar 

  12. Patel, S., J. Tsang, G. M. Harbers, K. E. Healy, and S. Li (2007) Regulation of endothelial cell function by GRGDSP peptide grafted on interpenetrating polymers. J. Biomed. Mater. Res. A. 83: 423–433.

    Article  Google Scholar 

  13. Jeong, S. I., S. Y. Kim, S. K. Cho, M. S. Chong, K. S. Kim, H. Kim, S. B. Lee, and Y. M. Lee (2007) Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomat. 28: 1115–1122.

    Article  CAS  Google Scholar 

  14. Shin, Y. M., Y. B. Lee, S. J. Kim, J. K. Kang, J. -C. Park, W. Jang, and H. Shin (2012) Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts. Biomacromol. 13: 2020–2028.

    Article  CAS  Google Scholar 

  15. Lee, Y. B., Y. M. Shin, J. -H. Lee, I. Jun, J. K. Kang, J. -C. Park, and H. Shin (2012) Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomat. 33: 8343–8352.

    Article  CAS  Google Scholar 

  16. Shin, Y. M., H. Shin, and Y. Lim (2010) Surface modification of electrospun poly(L-lactide-epsilon-caprolactone) fibrous meshes with a RGD peptide for the control of adhesion, proliferation and differentiation of the preosteoblastic cells. Macromol. Res. 18: 472–481.

    Article  CAS  Google Scholar 

  17. Shin, Y. M., K. S. Kim, Y. M. Lim, Y. C. Nho, and H. Shin (2008) Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(Llactide-co-epsilon-caprolactone) substrates. Biomacromol. 9: 1772–1781.

    Article  CAS  Google Scholar 

  18. Grondahl, L., A. Chandler-Temple, and M. Trau (2005) Polymeric grafting of acrylic acid onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Surface functionalization for tissue engineering applications. Biomacromol. 6: 2197–2203.

    Article  CAS  Google Scholar 

  19. Seal, B. L., T. C. Otero, and A. Panitch (2001) Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng. R 34: 147–230.

    Article  Google Scholar 

  20. Huebsch, N., P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mat. 9: 518–526.

    Article  CAS  Google Scholar 

  21. Ko, E. K., S. I. Jeong, J. H. Lee, and H. Shin (2008) Improvement of differentiation and mineralization of pre-osteoblasts on composite nanofibers of Poly(lactic acid) and nanosized bovine bone powder. Macromol. Biosci. 8: 1098–1107.

    Article  CAS  Google Scholar 

  22. Jeong, S. I., S. H. Kim, Y. H. Kim, Y. Jung, J. H. Kwon, B. -S. Kim, and Y. M. Lee (2004) Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J. Biomater. Sci. Polym. Ed. 15: 645–660.

    Article  CAS  Google Scholar 

  23. Jin, J., S. I. Jeong, Y. M. Shin, K. S. Lim, H. S. Shin, Y. M. Lee, H. C. Koh, and K. -S. Kim (2009) Transplantation of mesenchymal stem cells within a poly(lactide-co-ɛ-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Euro. J. Heart Fail. 11: 147–153.

    Article  CAS  Google Scholar 

  24. Jun, I., S. Jeong, and H. Shin (2009) The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomat. 30: 2038–2047.

    Article  CAS  Google Scholar 

  25. Kang, H. -W., Y. Tabata, and Y. Ikada (1999) Fabrication of porous gelatin scaffolds for tissue engineering. Biomat. 20: 1339–1344.

    Article  CAS  Google Scholar 

  26. De Cock, L. J., O. De Wever, H. Hammad, B. N. Lambrecht, E. Vanderleyden, P. Dubruel, F. De Vos, C. Vervaet, J. P. Remon, and B. G. De Geest (2012) Engineered 3D microporous gelatin scaffolds to study cell migration. Chem. Commun. 48: 3512–3514.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Mook Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, Y.M., Lim, JY., Park, JS. et al. Radiation-induced biomimetic modification of dual-layered nano/microfibrous scaffolds for vascular tissue engineering. Biotechnol Bioproc E 19, 118–125 (2014). https://doi.org/10.1007/s12257-013-0723-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0723-4

Keywords

Navigation