Skip to main content
Log in

Predictive evaluation for the preparation of a synthetic Y-shaped DNA nanostructure

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

With the advent of deoxyribonucleic acid (DNA) nanotechnology, the Y-shaped DNA nanostructure (Y-DNA) as a basic block was first created. Due to their characteristic selectivity and specificity, Y-DNA-based materials have been utilized in a variety of scientific fields including multiplexed nanobarcoding. Basically, the tripod DNA nanostructure was prepared by simple hybridization of three different single stranded DNA (ssDNA). Before the synthetic process, the optical densities (OD) of the three ssDNAs were measured to accurately estimate the concentration. Through repeated temperature fluctuations, three ssDNAs were hybridized into a Y-shaped block with both a central junction and three blunt ended arms. After the reaction, the ODs of the synthesized DNA products were measured and compared with the theoretical OD values calculated by a MATLAB program (‘matrix laboratory’) with different molar concentrations and volumes to predict the presence of Y-DNA. Simultaneously, the product was analyzed by agarose gel electrophoresis to confirm the YDNA structure. The measured ODs of the solutions with confirmed Y-DNA structures were close to the theoretical maximum OD values. This article provides means to help understand and prepare Y-DNA by performing OD measurements. It is highly expected that this guide will be an excellent starting point for structural DNA nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinheiro, V., D. Han, W. Shih, and H. Yan (2011) Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6: 763–772.

    Article  CAS  Google Scholar 

  2. Seeman, N. C. (2010) Nanomaterials based on DNA. Annu. Rev. Biochem. 79: 65–87.

    Article  CAS  Google Scholar 

  3. Lee, C. C., J. A. MacKay, J. M. Frechet, and F. C. Szoka (2005) Designing dendrimers for biological applications. Nat. Biotechnol. 23: 1517–1526.

    Article  CAS  Google Scholar 

  4. Nilsen, T. W., J. Grayzel, and W. J. Prensky (1997) Dendritic nucleic acid structures. J. Theor. Biol. 187: 273–284.

    Article  CAS  Google Scholar 

  5. Rothemund, P. W. K. (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440: 297–302.

    Article  CAS  Google Scholar 

  6. Rothemund, P. W. K., A. Ekani-Nkodo, N. Papadakis, A. Kumar, D. K. Fygenson, and E. Winfree (2004) Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126: 16344–16352.

    Article  CAS  Google Scholar 

  7. Lin, C., R. Jungmann, A. M. Leifer, C. Li, D. Levner, G. M. Church, W. M. Shih, and P. Yin (2012) Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat. Chem. 4: 832–839.

    Article  CAS  Google Scholar 

  8. Kershner, R. J., L. D. Bozano, C. M. Micheel, A. M. Hung, A. R. Fornof, J. N. Cha, C. T. Rettner, M. Bersani, J. Frommer, P. W. K. Rothemund, and G. M. Wallraff (2009) Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4: 557–561.

    Article  CAS  Google Scholar 

  9. Han, D., S. Pal, Y. Liu, and H. Yan (2010) Folding and cutting DNA into reconfigurable topological nanostructures. Nat. Nanotechnol. 5: 712–717.

    Article  CAS  Google Scholar 

  10. Ke, Y., S. M. Douglas, M. Liu, J. Sharma, A. Cheng, A. Leung, Y. Liu, W. M. Shih, and H. Yan (2009) Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 131: 15903–15908.

    Article  CAS  Google Scholar 

  11. Douglas, S. M., H. Dietz, T. Liedl, B. Högberg, F. Graf, and W. M. Shih (2009) Self-assembly by DNA into nanoscale three-dimensional shapes. Nature 459: 414–418.

    Article  CAS  Google Scholar 

  12. Seeman, N. C. and N. R. Kallenbach (1982) Design of immobile nucleic acid junctions. J. Theor. Biol. 99: 237–247.

    Article  CAS  Google Scholar 

  13. Um, S. H., J. B. Lee, N. Park, S. Y. Kwon, C. C. Umbach, and D. Luo (2006) Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5: 797–801.

    Article  CAS  Google Scholar 

  14. Park, N., S. H. Um, H. F. Funabashi, J. Xu, and D. Luo (2009) A cell-free protein-producing gel. Nat. Mater. 8: 432–437.

    Article  CAS  Google Scholar 

  15. Park, N., J. S. Kahn, E. J. Rice, M. R. Hartman, H. Funabashi, J. Xu, S. H. Um, and D. Luo (2009) High-yield cell-free protein production from P-gel. Nat. Protoc. 4: 1759–1770.

    Article  CAS  Google Scholar 

  16. Li, Y., Y. D. Tseng, S. Y. Kwon, L. D’espaux, J. S. Bunch, P. L. Mceuen, and D. Luo (2004) Controlled assembly of dendrimerlike DNA. Nat. Mater. 3: 38–42.

    Article  CAS  Google Scholar 

  17. Li, Y., Y. T. H. Cu, and D. Luo (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol. 23: 885–889.

    Article  CAS  Google Scholar 

  18. Lee, J. B., Y. H. Roh, S. H. Um, H. Funabashi, W. Cheng, J. J. Cha, P. Kiatwuthinon, D. A. Muller, and D. Luo (2009) Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat. Nanotechnol. 4: 430–436.

    Article  CAS  Google Scholar 

  19. Um, S. H., J. B. Lee, S. Y. Kwon, Y. Li, and D. Luo (2006) Dendrimer-like DNA-based fluorescence nanobarcodes. Nat. Protoc. 1: 995–1000.

    Article  CAS  Google Scholar 

  20. Roh, Y. H., J. B. Lee, P. Kiatwuthinon, M. R. Hartman, J. J. Cha, S. H. Um, D. A. Muller, and D. Luo (2011) DNAsomes: Multifunctional DNA-based nanocarriers. Small 7: 74–78.

    Article  CAS  Google Scholar 

  21. Chatterjee, S., J. Lee, N. V. Valappil, D. Luo, and V. M. Menon (2012) Probing Y-shaped DNA structure with time-resolved FRET. Nanoscale 4: 1568–1571.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soong Ho Um.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, K.S., Shin, S.W., Choi, JH. et al. Predictive evaluation for the preparation of a synthetic Y-shaped DNA nanostructure. Biotechnol Bioproc E 19, 262–268 (2014). https://doi.org/10.1007/s12257-013-0626-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0626-4

Keywords

Navigation