Skip to main content
Log in

Processing and characterization of laser sintered hydroxyapatite scaffold for tissue engineering

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The sintering processing of hydroxyapatite (HAP) powder was studied using selective laser sintering for bone tissue engineering. The effect of laser energy density on the microstructure, phase composition and mechanical properties of the sintered samples was investigated. The results indicate that the average grain size increases from 0.211 ± 0.039 to 0.979 ± 0.133 μm with increasing the laser energy density from 2.0 to 5.0 J/mm2. The maximum value of Vickers hardness and fracture toughness were 4.0 ± 0.13 Gpa and 1.28 ± 0.033 MPam1/2, respectively, when the laser energy density was 4.0 J/mm2. The XRD results indicated that the nano-HAP was decomposed into TCP with the laser energy density of above 4.0 J/mm2. In vitro bioactivity after soaking in simulated body fluid (SBF) for 3 ∼ 12 days showed that a bone-like apatite layer on the surface of the sintered samples. It indicated that the HAP scaffold possesses favorable mechanical properties and bioactivity, and may be used for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chua, C. K., K. F. Leong, C. M. Cheah, and S. W. Chua (2003) Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification. Int. J. Adv. Manuf. Technol. 21: 291–301.

    Article  Google Scholar 

  2. Masood, S. H. and K. Alamara (2010) Development of scaffold building units and assembly for tissue engineering using fused deposition modelling. Adv. Mater. Res. 83-86: 269–274.

    Article  Google Scholar 

  3. Niknejad, H., H. Peirovi, M. Jorjani, A. Ahmadiani, J. Ghanavi, and M. S. Seifalian (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur. Cells. Mater. 15: 88–99.

    CAS  Google Scholar 

  4. Zhang, H., E. Burdet, A. N. Poo, and D. W. Hutmacher (2008) Microassembly fabrication of tissue engineering scaffolds with customized design. IEEE. T. Autom. Sci. Eng. 5: 446–456.

    Article  Google Scholar 

  5. Song, L., Y. F. Xiao, L. Gan, Y. Wu, F. Wu, and Z. W. Gu (2012) The effect of antibacterial ingredients and coating microstructure on the antibacterial properties of plasma sprayed hydroxyapatite coatings. Surf. Coat. Tech. 206: 2986–2990.

    Article  Google Scholar 

  6. Zhu, J., D. Kong, Y. Zhang, N. Yao, Y. Tao, and T. Qiu (2011) The influence of conditions on synthesis Hydroxyapatite by chemical precipitation method. IOP. Conf. Ser.: Mater. Sci. Eng. 18: 062023.

    Article  Google Scholar 

  7. Nathanael, A. J., D. Mangalaraj, P. C. Chen, and N. Ponpandian (2011) Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene. J. Nanopart. Res. 13: 1841–1853.

    Article  Google Scholar 

  8. Ho, M. H., P. Y. Kuo, H. J. Hsieh, T. Y. Hsien, L. T. Hou, J. Y. Lai, and D. M. Wang (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomat. 25: 129–138.

    Article  CAS  Google Scholar 

  9. Kashiwazaki, H., Y. Kishiya, A. Matsuda, K. Yamaguchi, T. Lizuka, J. Tanaka, and N. Inoue (2009) Fabrication of porous chitosan/ hydroxyapatite nanocomposites: Their mechanical and biological properties. Bio-Med. Mater. Eng. 19: 133–140.

    Google Scholar 

  10. Livingston, T., P. Ducheyne, and J. Garino (2002) In vivo evaluation of a bioactive scaffold for bone tissue engineering. J. Biomed. Mater. Res. 62: 1–13.

    Article  CAS  Google Scholar 

  11. Chuenjitkuntaworn, B., W. Inrung, D. Damrongsri, K. Mekaapiruk, P. Supaphol, and P. Pavasant (2010) Polycaprolactone/Hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J. Biomed. Mater. Res. Part: A 94: 241–251.

    Article  Google Scholar 

  12. Guobao, W. and X. M. Peter (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomat. 25: 4749–4757.

    Article  Google Scholar 

  13. Hutmacher, D. W. (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 12: 107–124.

    Article  CAS  Google Scholar 

  14. Lohfeld, S., M. A. Tyndyk, S. Cahill, N. Flaherty, V. Barron, and P. E. McHugh (2010) A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J. Biomed. Sci. Eng. 3: 138–147.

    Article  Google Scholar 

  15. Williams, J. M., A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomat. 26: 4817–4827.

    Article  CAS  Google Scholar 

  16. Kolan, K. C., M. C. Leu, G. E. Hilmas, and M. Velez (2012) Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering. J. Mech. Behav. Biomed. Mater. 13: 14–24.

    Article  Google Scholar 

  17. Zhou, W. Y., S. H. Lee, M. Wang, W. L. Cheung, and W. Y. Ip. (2008) Selective laser sintering of porous tissue engineering scaffolds from poly (L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J. Mater. Sci.: Mater. Med. 19: 2535–2540.

    Article  CAS  Google Scholar 

  18. Tan, K. H., C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar, and S. W. Cha (2003) Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomat. 24: 3115–3123.

    Article  CAS  Google Scholar 

  19. Shuai, C., C. Gao, Y. Nie, H. Hu, Y. Zhou, and S. Peng (2011) Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnol. 22: 285703.

    Article  Google Scholar 

  20. Salmoria, G. V., P. Klauss, R. A. Paggi, L. A. Kanis, and A. Lago (2009) Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polym. Test. 28: 648–652.

    Article  CAS  Google Scholar 

  21. Khalil, K. A. and H. Y. Kim (2007) Observation of toughness improvement of the hydroxyapatite bioceramics densified using high-frequency induction heat sintering. Int. J. Appl. Ceram. Technol. 4: 30–37.

    Article  CAS  Google Scholar 

  22. Webster, T. J., C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomat. 21: 1803–1810.

    Article  CAS  Google Scholar 

  23. Padilla, S., M. Vallet-Regí, M. P. Ginebra, and F. J. Gil (2005) Processing and mechanical properties of hydroxyapatite pieces obtained by the gelcasting method. J. Eur. Ceram. Soc. 25: 375–383.

    Article  CAS  Google Scholar 

  24. Lin, K., L. Chen, and J. Chang (2012) Fabrication of dense hydroxyapatite nanobioceramics with enhanced mechanical properties via two-step sintering process. Int. J. Appl. Ceram. Technol. 9: 479–485.

    Article  CAS  Google Scholar 

  25. Manafi, S. A. and S. Joughehdoust (2009) Synthesis of hydroxyapatite nanostructure by hydrothermal condition for biomedical application. Iranian. J. Pharm. Sci. 5: 89–94.

    CAS  Google Scholar 

  26. Yourong, D., W. Chaoyuan, C. Jiyong, and Z. Xingdong (2002) Bone-like apatite formation in intramuscularly implanted calcium phosphate ceramics in different kinds of animals. J. Mater. Sci. Lett. 21: 775–778.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuping Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuai, C., Feng, P., Cao, C. et al. Processing and characterization of laser sintered hydroxyapatite scaffold for tissue engineering. Biotechnol Bioproc E 18, 520–527 (2013). https://doi.org/10.1007/s12257-012-0508-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0508-1

Keywords

Navigation