Skip to main content
Log in

Resolution of racemic ketoprofen in organic solvents by lipase from Burkholderia cepacia G63

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A lipase from the Burkholderia cepacia strain G63 immobilized on resin was used for the resolution of ketoprofen. To study its catalytic properties in enantioselective esterication, different alcohols and solvents were tested to select the most suitable acyl acceptor and reaction medium. Compared with the low activity of the free lipase, the enzyme activity and E value of the immobilized lipase were significantly enhanced. The enantioselectivity of the immobilized lipase could also be markedly improved by adding a small amount of 18-crown-6. RSM was employed to optimize the reaction parameters. The optimal reaction conditions were: reaction time 22.50 h, additives dosage 0.4322 g (0.33 mmol/mL), and substrate molar ratio 54.11:1. Under optimal conditions, the maximal E value was up to 10.01, which exhibited a better enantioselectivity than some commercial lipases, such as Novozym 435, Lipozyme RM IM and LipozymeTL IM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ghanem, A., M. N. Aboul-Enein, A. El-Azzouny, and M. F. El-Behairy (2010) Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: Direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses. J. Chromatogr. A 1217: 1063–1074.

    Article  CAS  Google Scholar 

  2. Duan, G., C. B. Ching, E. Lim, and C. H. Ang (1997) Kinetic study of enantioselective esterification of ketoprofen with n-propanol catalysed by anlipase in an organic medium. Biotechnol. Lett. 19: 1051–1055.

    Article  CAS  Google Scholar 

  3. Lee, K. W., G. S. Shin, H. A. Bae, H. D. Shin, and Y. H. Lee (2005) Isolation and characterization of Acinetobacter sp. ES-1 excreting a lipase with high enantioselectivity for (S)-ketoprofen ethyl ester. Biotechnol. Lett. 26: 1639–1642.

    Article  Google Scholar 

  4. Zhao, D., E. Xun, J. Wang, R. Wang, X. Wei, L. Wei, and Z. Wang (2011) Enantioselective esterification of ibuprofen by a novel thermophilic biocatalyst: APE1547. Biotechnol. Bioproc. Eng. 16: 638–644.

    Article  CAS  Google Scholar 

  5. Bornscheuer, U. T. (2002) Methods to increase enantioselectivity of lipases and esterases. Curr. Opin. Biotechol. 13: 543–547.

    Article  CAS  Google Scholar 

  6. David, G., C. Salagnad, P. Monsan, M. R. Simeona, and V. Tranc (2003) Towardsa novel explanation of Pseudomonas cepacia lipase enantioselectivity via molecular modelling of the enantiomer trajectory into the active site. Tetrahedron-Asymmetry 14: 1807–1817.

    Article  Google Scholar 

  7. French, A. N. (2010) Clean, green chiral reactions-just add a salt. Science 328: 1365–1366.

    Article  CAS  Google Scholar 

  8. Park, H. J., W. J. Choi, E. C. Huh, E. Y. Lee, and C. Y. Choi (1999) Production of optically active ketoprofen by direct enzymatic esterification. J. Biosci. Bioeng. 87: 545–547.

    Article  CAS  Google Scholar 

  9. Wu, J. C., H. R. Low, Y. Leng, Y. Chow, R. Li, M. M. R. Talukder, and W. J. Choi (2006) Ketoprofen resolution by enzymatic esterification and hydrolysis of the ester product. Biotechnol. Bioproc. Eng. 11: 211–214.

    Article  CAS  Google Scholar 

  10. Yang, J. K., D. Y. Guo, and Y. Yan (2007) Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from G63. J. Mol. Catal. B: Enz. 45: 91–96.

    Article  CAS  Google Scholar 

  11. Jia, B., J. K. Yang, W. S. Liu, L. Xu, and Y. J. Yan (2010) Homologous overexpression of a lipase from Burkholderia cepacia using the lambda Red recombinase system. Biotechnol. Lett. 32: 521–526.

    Article  CAS  Google Scholar 

  12. Jia, B., W. Liu, J. Yang, X. Wang, C. Ye, and Y. Yan (2010) Isolation and identification of lipase-producing Burkholderia cepacia in the soil. Biotechnol. Bull. 4: 183–188.

    Google Scholar 

  13. Yun, L., T. Liu, X. Wang, L. Xu, and Y. Yan (2011) Biodiesel synthesis catalyzed by Burkholderia cenocepacia lipase supported on macroporous resin NKA in solvent-free and isooctane systems. Energ. Fuel 25: 1206–1212.

    Article  Google Scholar 

  14. Qin, L. and Y. J. Yan (2010) Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase. Appl. Energ. 87: 3148–3154.

    Article  Google Scholar 

  15. Qin, L., J. Zheng, and Y. J. Yan (2010) Biodiesel preparation catalyzed by compound-lipase in co-solvent. Fuel Proc. Technol. 91: 1229–1234.

    Article  Google Scholar 

  16. Tomic, S., B. Bertosa, B. Kojic-Prodic, and I. Kolosvaruy (2004) Stereoselectivity of Burkholderia cepacia lipase towards secondary alcohols: Molecular modelling and 3D QSAR approach. Tetrahedron-Asymmetry 15: 1163–1172.

    Article  CAS  Google Scholar 

  17. Liu, Y., X. Zhang, H. Tan, Y. J. Yan, and B. H. Hameed (2010) Effect of pretreatment by different organic solvents on esterification activity and conformation of immobilized Pseudomonas cepacia lipase. Proc. Biochem. 45: 1176–1180.

    Article  CAS  Google Scholar 

  18. Rui, T., C. Yang, X. Wei, E. Xun, R. Wang, S. Cao, Z. Wang, and L. Wang (2011) Optimization of APE1547-catalyzed enantioselective transesterification of (R/S)-2-methyl-1-butanol in an ionic liquid. Biotechnol. Bioproc. Eng. 16: 337–342.

    Article  Google Scholar 

  19. Petkar, M., A. Lali, P. Caimi, and M. Daminati (2006) Immobilization of lipases for nonaqueous synthesis. J. Mol. Catal. B: Enz. 39: 83–90.

    Article  CAS  Google Scholar 

  20. Chen, C. S., Y. Fujimoto, G. Girdaukas, and C. J. Sih (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104: 7294–7299.

    Article  CAS  Google Scholar 

  21. Nicola, D. A., P. Lombardi, G. Nicolosi, and G. Salvo (2002) Large scale preparation of enantiopure S-ketoprofen by biocatalysed kinetic resolution. Proc. Biochem. 38: 373–377.

    Article  Google Scholar 

  22. Holmquist, M., F. Haeffner, T. Norin, and K. Hult (1996) A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols. Protein Sci. 5: 83–88.

    Article  CAS  Google Scholar 

  23. Klibanov, A. M. (2001) Improving enzymes by using them in organic solvents. Nature 409: 241–246.

    Article  CAS  Google Scholar 

  24. Wescott, C. R. and A. M. Klibanov (1993) Solvent variation inverts substrate specificity of an enzyme. J. Am. Chem. Soc. 115: 1629–1631.

    Article  CAS  Google Scholar 

  25. Wescott, C. R. and A. M. Klibanov (1997) Thermodynamic analysis of solvent effect on substrate specificity of lyophilized enzymes suspended in organic media. Biotechnol. Bioeng. 56: 340–344.

    Article  CAS  Google Scholar 

  26. Laane, C., S. Boeren, K. Vos, and C. Veeger (2009) Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 102: 1–8.

    Article  Google Scholar 

  27. Gregory, D. C., A. Ducret, M. Trani, and R. Lortie (2000) Enantioselective esterification of racemic ketoprofen in non-aqueous solvent under reduced pressure. J. Mol. Catal. B: Enz. 9: 49–56.

    Article  Google Scholar 

  28. Ong, A. L., A. H. Kamaruddin, S. Bhatia, W. S. Long, S. T. Lim, and R. Kumari (2006) Performance of free Candida antarctica lipase B in the enantioselective esterification of (R)-ketoprofen. Enz. Microb. Tech. 39: 924–929.

    Article  CAS  Google Scholar 

  29. Cong, F. D., Y. H. Wang, C. Y. Ma, H. F. Yu, S. P. Han, J. Tao, and S. G. Cao (2005) A way for resolution of (R, S)-2-octanol by combining dynamic kinetic resolution with double kinetic resolution. Enz. Microb. Tech. 36: 595–599.

    Article  CAS  Google Scholar 

  30. Francisco, J. H. F., A. P. Rios, M. Rubio, D. Gomez, and G. Villora (2007) Enhancement of activity and selectivity in lipase-catalyzed transesterification in ionic liquids by the use of additives. J. Chem. Technol. Biotech. 82: 882–887.

    Article  Google Scholar 

  31. Fritz, T. (2000) Enhancement of selectivity and reactivity of lipases by additives. Tetrahedron 56: 2905–2919.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Liu, T., Xu, L. et al. Resolution of racemic ketoprofen in organic solvents by lipase from Burkholderia cepacia G63. Biotechnol Bioproc E 17, 1147–1155 (2012). https://doi.org/10.1007/s12257-012-0279-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0279-8

Keywords

Navigation