Research Paper

Biotechnology and Bioprocess Engineering

, Volume 17, Issue 5, pp 1048-1054

Optimization of culture conditions for the production of Pleuromutilin from Pleurotus Mutilus using a hybrid method based on central composite design, neural network, and particle swarm optimization

  • Latifa KhaouaneAffiliated withLaboratoire de Biomatériaux et Phénomènes de Transport (LBMPT), Université de MédéaChérif Si-Moussa, Salah Hanini, Othmane Benkortbi Faculté des Sciences et de la Technologie, Université de Médéa Email author 
  • , Chérif Si-MoussaAffiliated withLaboratoire de Biomatériaux et Phénomènes de Transport (LBMPT), Université de MédéaChérif Si-Moussa, Salah Hanini, Othmane Benkortbi Faculté des Sciences et de la Technologie, Université de Médéa
  • , Salah HaniniAffiliated withLaboratoire de Biomatériaux et Phénomènes de Transport (LBMPT), Université de MédéaChérif Si-Moussa, Salah Hanini, Othmane Benkortbi Faculté des Sciences et de la Technologie, Université de Médéa
  • , Othmane BenkortbiAffiliated withLaboratoire de Biomatériaux et Phénomènes de Transport (LBMPT), Université de MédéaChérif Si-Moussa, Salah Hanini, Othmane Benkortbi Faculté des Sciences et de la Technologie, Université de Médéa

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This study aims at optimizing the culture conditions (agitation speed, temperature and pH) of the Pleuromutilin production by Pleurotus mutilus. A hybrid methodology including a central composite design (CCD), an artificial neural network (ANN), and a particle swarm optimization algorithm (PSO) was used. Specifically, the CCD and ANN were used for conducting experiments and modeling the non-linear process, respectively. The PSO was used for two purposes: Replacing the standard back propagation in training the ANN (PSONN) and optimizing the process. In comparison to the response surface methodology (RSM) and to the Bayesian regularization neural network (BRNN), PSONN model has shown the highest modeling ability. Under this hybrid approach (PSONN-PSO), the optimum levels of culture conditions were: 242 rpm agitation speed; temperature 26.88 and pH 6.06. A production of 10,074 ± 500 μg/g, which was in very good agreement with the prediction (10,149 μg/g), was observed in verification experiment. The hybrid PSONN-PSO gave a yield of 27.5% greater than that obtained by the hybrid BRNN-PSO. This work shows that the combination of PSONN with the generic PSO algorithm has a good predictability and a good accuracy for bio-process optimization. This hybrid approach is sufficiently general and thus can be helpful for modeling and optimization of other industrial bio-processes.

Keywords

pleuromutilin Pleurotus mutilus culture conditions central composite design neural network particle swarm optimization