Skip to main content
Log in

Anaerobic co-digestion of swine manure with energy crop residues

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Anaerobic co-digestion involves the treatment of different substrates with the aim of improving the production of biogas and the stability of the process. In this research, co-digestion of swine manure (SM) and energy crop residues (ECRs) was studied. The mixtures evaluated contained SM combined with maize (Mz), rapeseed (Rs) or sunflower (Sf) residues. Batch and semi-continuous experiments were performed to determine methane (CH4) yields and the behavior of reactors while co-digesting agricultural wastes. Three different proportions of ECRs were tested in batch experiments for co-digestion with SM: 25, 50, and 75% volatile solids (VS). On the basis of the results obtained from batch tests, a mixture with a 50% ECR content was selected for the second stage of the study. Mesophilic reactors with a 3 L working volume were used for semi-continuous experiments. The hydraulic retention time (HRT) was set at 30 days and the reactors were kept under these operational conditions over four HRTs. The addition of ECR to the co-digestion system resulted in a major increase in the amount of biogas produced daily. The highest biogas yield was obtained when co-digesting Rs (3.5 L/day), although no improvement was observed in specific gas production from the addition of the co-substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Raven, R. P. J. M. and K. H. Gregersen (2007) Biogas plants in Denmark: Successes and setbacks. Renew. Sustain. Energy Rev. 11: 116–132.

    Article  Google Scholar 

  2. Weiland, P. (2006) Biomass digestion in agriculture: A successful pathway for the energy production and waste treatment in Germany. Eng. Life Sci. 6: 302–309.

    Article  CAS  Google Scholar 

  3. Tranter, R. B., A. Swinbank, P. J. Jones, C. J. Banks, and A. M. Salter (2011) Assessing the potential for the uptake of on-farm anaerobic digestion for energy production in England. Energy Policy 39: 2424–2430.

    Article  Google Scholar 

  4. Ward, A. J., P. J. Hobbs, P. J. Holliman, and D. L. Jones (2008) Optimisation of the Anaerobic digestion of agricultural resources. Bioresour. Technol. 99: 7928–7940.

    Article  CAS  Google Scholar 

  5. Álvarez, J. A., L. Otero, and J. M. Lema (2010) A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour. Technol. 101: 1153–1158.

    Article  Google Scholar 

  6. Ashekuzzaman, S. M. and T. G. Poulsen (2011) Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures. Bioresour. Technol. 102: 2213–2218.

    Article  CAS  Google Scholar 

  7. Demirel, B. and P. Scherer (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35: 992–998.

    Article  CAS  Google Scholar 

  8. Mondragón, F. A., P. Samar, H. H. J. Cox, B. K. Ahring, and R. Iranpour (2006) Anaerobic codigestion of municipal, farm, and industrial organic wastes: A survey of recent literature. Water Environ. Res. 78: 607–636.

    Article  Google Scholar 

  9. Statistical Office of the European Communities (EUROSTAT) (2011). http://epp.eurostat.ec.europa.eu/portal/page/portal/agriculture/data/database.

  10. Ministerio de Medio Ambiente, Medio Rural y Marino (MARM) (2010). http://www.marm.es.

  11. Chen, Y., J. J. Cheng, and K. S. Creamer (2008) Inhibition of anaerobic digestion processes: A review. Bioresour. Technol. 99: 4044–4064.

    Article  CAS  Google Scholar 

  12. Hansen, K. H., I. Angelidaki, and B. K. Ahring (1998) Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res. 32: 5–12.

    Article  CAS  Google Scholar 

  13. Kayhanian, M. (1994) Performance of a high-solids anaerobic digestion process under various ammonia concentrations. J. Chem. Technol. Biotechnol. 59: 349–352.

    Article  CAS  Google Scholar 

  14. Henze, M. (1995) Wastewater treatment: Biological and chemical processes. Environmental engineering, Springer, Berlín, Germany.

    Google Scholar 

  15. Angelidaki, I. and B. K. Ahring (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: Effect of temperature. Water Res. 28: 727–731.

    Article  CAS  Google Scholar 

  16. Mata-Alvarez, J., S. Macé, and P. Llabrés (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 74: 3–16

    Article  CAS  Google Scholar 

  17. Molinuevo-Salces, B., M. C. García-González, C. González-Fernández, M. J. Cuetos, A. Morán, and X. Gómez (2010) Anaerobic co-digestion of livestock wastes with vegetable processing wastes: A statistical analysis. Bioresour. Technol. 101: 9479–9485.

    Article  CAS  Google Scholar 

  18. Probiogas (2010) http://www.probiogas.es/

  19. Hendriks, A. T. W. M. and G. Zeeman (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10–18.

    Article  CAS  Google Scholar 

  20. Palmowski, L. M. and J. A. Müller (2000) Influence of the size reduction of organic wastes on their anaerobic digestion. Wat. Sci. Technol. 41: 155–162.

    CAS  Google Scholar 

  21. Gómez, X., M. J. Cuetos, J. I. Prieto, and A. Morán (2009) Bio-Hydrogen production from waste fermentation: Mixing and static conditions. Renew. Energy 34: 970–975.

    Article  Google Scholar 

  22. Cuetos, M. J., X. Gómez, M. Otero, and A. Morán (2008) Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: Influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochem. Eng. J. 40: 99–106.

    Article  CAS  Google Scholar 

  23. American Public Health Association, American Water Works Association, and Water Environment Federation (1998) Standard methods for the examination of water and wastewater. 20th ed., American Public Health Association, Washington, D.C, USA.

    Google Scholar 

  24. Van Soest, P. J., J. B. Robertson, and B. A. Lewis (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583–3597.

    Article  Google Scholar 

  25. Walkey, A. and I. A. Black (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29–38.

    Article  Google Scholar 

  26. Lobato, A., M. J. Cuetos, X. Gómez, and A. Morán (2010) Improvement of biogas production by co-digestion of swine manure and residual glycerine. Biofuels 1: 59–68.

    Article  CAS  Google Scholar 

  27. Chae, K. J., A. Jang, S. K. Yim, and I. S. Kim (2008) The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 99: 1–6.

    Article  CAS  Google Scholar 

  28. Møller, H. B., S. G. Sommer, and B. K. Ahring (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26: 485–495.

    Article  Google Scholar 

  29. Vavilin, V. A., S. V. Rytov, L. Y. Lokshina, J. A. Rintala, and G. Lyberatos (2001) Simplified hydrolysis models for the optimal design of two-stage anaerobic digestion. Water Res. 35: 4247–4251.

    Article  CAS  Google Scholar 

  30. Xie, S., P. G. Lawlor, J. P. Frost, Z. Hu, and X. Zhan (2011) Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage. Bioresour. Technol. 102: 5728–5733.

    Article  CAS  Google Scholar 

  31. Vavilin, V. A., S. V. Rytov, and L. Y. Lokshina (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresour. Technol. 56: 229–237.

    Article  CAS  Google Scholar 

  32. Labatut, R. A., L. T. Angenent, and N. R. Scott (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour. Technol. 102: 2255–2264.

    Article  CAS  Google Scholar 

  33. Lay, J., Y. Li, and T. Noike (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res. 31: 1518–1524.

    Article  CAS  Google Scholar 

  34. Sung, S. and T. Liu (2003) Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere. 53: 43–52.

    Article  CAS  Google Scholar 

  35. Wu, X., W. Yao, J. Zhu, and C. Miller (2010) Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour. Technol. 101: 4042–4047.

    Article  CAS  Google Scholar 

  36. Fujita, M., J. M. Scharer, and M. Moo-Young (1980) Effect of corn stover addition on the anaerobic digestion of swine manure. Agr. Wastes 2:177–184.

    Article  Google Scholar 

  37. Llabrés-Luengo, P. and J. Mata-Alvarez (1988) Influence of temperature, buffer, composition and straw particle length on the anaerobic digestion of wheat straw-pig manure mixtures. Resour. Conserv. Recycling 1: 27–37.

    Article  Google Scholar 

  38. Lehtomäki, A., S. Huttunen, and J. A. Rintala (2007) Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour. Conserv. Recycling 51: 591–609.

    Article  Google Scholar 

  39. Fischer, J. R., E. L. Iannotti, and C. D. Fulhage (1983) Production of methane gas from combinations of wheat straw and swine manure. Trans. ASAE 26: 546–548.

    CAS  Google Scholar 

  40. Comino, E., M. Rosso, and V. Riggio (2010) Investigation of increasing organic loading rate in the co-digestion of energy crops and cow manure mix. Bioresour. Technol. 101: 3013–3019.

    Article  CAS  Google Scholar 

  41. Braun, R., P. Huber, and J. Meyrath (1981) Ammonia toxicity in liquid piggery manure digestion. Biotechnol. Lett. 3: 159–164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camino Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuetos, M.J., Fernández, C., Gómez, X. et al. Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol Bioproc E 16, 1044–1052 (2011). https://doi.org/10.1007/s12257-011-0117-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0117-4

Keywords

Navigation