Skip to main content
Log in

Proteomic analysis of sericin in Bombyx mori cocoons

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cocoon sericin plays an important role in the reeling of silk and serves as a valuable biomaterial in the field of biomedicine, skincare, and food industries; however, knowledge about cocoon sericin proteins has been limited. For a comprehensive study on sericin, cocoons of eight varieties of silkworm of different geographic origin and with varied cocoon color were analyzed utilizing proteomics and bioinformatics approaches. The electrophoresis pattern demonstrated some common protein bands for all silkworm varieties and distinctive protein bands for some of those examined in the present study. The Ser2 protein, a new Ser3 protein, and four other novel sericin proteins were identified in cocoons for the first time. Products of both Ser1 and Ser3 genes appear to be ubiquitous in the cocoon shell of Bombyx mori. In addition, cocoons with especially high-reelability produced by the mutant strain B84 had an unique protein product of the Ser2 gene, indicating that the protein may play an important role in cocoon reelability. A series of sequence conflicts and post-translational modifications (PTMs) were also revealed in sericin proteins. Lipid modifications of sericin proteins, which promote waterproofing of the cocoon shell, were observed. Further, hydroxylation was identified, which provided evidence for intermolecular bonds among neighboring molecules of sericin as found in collagens. The sericin proteome data obtained from this study illuminated the molecular complexity of cocoon sericin and contributed to our understanding of the properties of sericin in filature and biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kundu, S. C., B. C. Dash, R. Dash, and D. L. Kaplan (2008) Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Prog. Polym. Sci. 33: 998–1012.

    Article  CAS  Google Scholar 

  2. Zhang, Y. Q. (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv. 20: 91–100.

    Article  CAS  Google Scholar 

  3. Gamo, T., T. Inokuchi, and H. Laufer (1977) Polypeptides of fibroin and sericin secreted from different sections of silk gland in Bombyx Mori. Insect Biochem. 7: 285–295.

    Article  CAS  Google Scholar 

  4. Sprague, K. U. (1975) The Bombyx mori silk proteins: Characterization of large polypeptides. Biochem. 14: 925–931.

    Article  CAS  Google Scholar 

  5. Takasu, Y., H. Yamada, and K. Tsubouchi (2002) Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 66: 2715–2718.

    Article  CAS  Google Scholar 

  6. Takasu, Y., H. Yamada, T. Tamura, H. Sezutsu, K. Mita, and K. Tsubouchi (2007) Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 37: 1234–1240.

    Article  CAS  Google Scholar 

  7. Takasu, Y., T. Hata, K. Uchino, and Q. Zhang (2010) Identification of Ser2 proteins as major sericin components in the noncocoon silk of Bombyx mori. Insect Biochem. Mol. Biol. 40: 339–344.

    Article  CAS  Google Scholar 

  8. Tokutake, S. (1980) Isolation of the smallest component of silk protein. Biochem. J. 187: 413–417.

    CAS  Google Scholar 

  9. Garel, A., G. Deleage, and J. C. Prudhomme (1997) Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the Ser 1B cDNA. Insect Bioche. Mol. Biol. 27: 469–477.

    Article  CAS  Google Scholar 

  10. Michaille, J. J., P. Couble, J. C. Prudhomme, and A. Garel (1986) A single gene produces multiple sericin messenger-RNAs in the silk gland of Bombyx mori. Biochimie. 68: 1165–1173.

    Article  CAS  Google Scholar 

  11. Okamoto, H., E. Ishikawa, and Y. Suzuki (1982) Structural analysis of sericin genes. Homologies with fibroin gene in the 5’ flanking nucleotide sequences. J. Biol. Chem. 257: 15192–15199.

    CAS  Google Scholar 

  12. Takasu, Y., H. Yamada, and K. Tsubouchi (2006) The silk sericin component with low crystallinity. Sanshi-Konchu Biotec. 75: 133–139.

    CAS  Google Scholar 

  13. Teramoto, H., A. Kakazu, and T. Asakura (2006) Native structure and degradation pattern of silk sericin studied by C-13 NMR spectroscopy. Macromol. 39: 6–8.

    Article  CAS  Google Scholar 

  14. Zhang, P., Y. Aso, K. Yamamoto, Y. Banno, Y. Wang, K. Tsuchida, Y. Kawaguchi, and H. Fujii (2006) Proteome analysis of silk gland proteins from the silkworm, Bombyx mori. Proteom. 6: 2586–2599.

    Article  CAS  Google Scholar 

  15. Aramwit, P., S. Damrongsakkul, S. Kanokpanont, and T. Srichana (2010) Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol. Appl. Biochem. 55: 91–98.

    Article  CAS  Google Scholar 

  16. Martel, A., M. Burghammer, R. J. Davies, and C. Riekel (2007) Thermal behavior of Bombyx mori silk: Evolution of crystalline parameters, molecular structure, and mechanical properties. Biomacromol. 8: 3548–3556.

    Article  CAS  Google Scholar 

  17. Teramoto, H., K. Nakajima, and C. Takabayashi (2004) Chemical modification of silk sericin in lithium chloride/dimethyl sulfoxide solvent with 4-cyanophenyl lsocyanate. Biomacromol. 5: 1392–1398.

    Article  CAS  Google Scholar 

  18. Teramoto, H. and M. Miyazawa (2005) Molecular orientation behavior of silk sericin film as revealed by ATR infrared spectroscopy. Biomacromol. 6: 2049–2057.

    Article  CAS  Google Scholar 

  19. Teramoto, H., A. Kakazu, K. Yamauchi, and T. Asakura (2007) Role of hydroxyl side chains in Bombyx mori silk sericin in stabilizing its solid structure. Macromol. 40: 1562–1569.

    Article  CAS  Google Scholar 

  20. Zhang, Y. Q., M. L. Tao, W. D. Shen, Y. Z. Zhou, Y. Ding, Y. Ma, and W. L. Zhou (2004) Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomat. 25: 3751–3759.

    Article  CAS  Google Scholar 

  21. Takasu, Y., H. Yamada, and K. Tsubouchi (2002) Extraction and chromatographic analysis of cocoon sericin of the silkworm, Bombyx mori. J. Insect Biotechnol. Sericol. 71: 151–155.

    CAS  Google Scholar 

  22. Laemmli, U. K. (1970) Cleavage of structureal proteins during assenmbly of head of bacteriophage-T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  23. Fernandez, J., F. Gharahdaghi, and S. M. Mische (1998) Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 19: 1036–1045.

    Article  CAS  Google Scholar 

  24. Gamo, T. (1973) Electrophoretic analyses of the protein extracted with disulfide cleavage from cocoons of the silkworm, Bombyx mori. J. Seric. Sci. Jpn. 42: 17–23.

    CAS  Google Scholar 

  25. Johnston, D. A., S. Capetillo, L. S. Ramagli, J. Guevara, D. M. Gersten, and L. V. Rodriguez (1984) Standardization of protein position in Silver-stained two-dimensional polyacrylamide-gel electrophoresis. Electrophoresis 5: 110–116.

    Article  CAS  Google Scholar 

  26. Tabunoki, H., S. Higurashi, O. Ninagi, H. Fujii, Y. Banno, M. Nozaki, M. Kitajima, N. Miura, S. Atsumi, K. Tsuchida, H. Maekawa, and R. Sato (2004) A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS Lett. 567: 175–178.

    Article  CAS  Google Scholar 

  27. Tamura, Y., K. Nakajima, K. Nagayasu, and C. Takabayashi (2002) Flavonoid 5-glucosides from the cocoon shell of the silkworm, Bombyx mori. Phytochem. 59: 275–278.

    Article  CAS  Google Scholar 

  28. Kurioka, A. and M. Yamazaki (2002) Purification and identification of flavonoids from the yellow green cocoon shell (Sasamayu) of the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 66: 1396–1399.

    Article  CAS  Google Scholar 

  29. Nakajima, M. (1963) Physiological studies on the function of genes concerning carotenoid permeability in the silkworm. Bull. Fac. Agric. Tokyo Univ. Agric. Technol. 8: 1–80.

    Google Scholar 

  30. Aramwit, P., S. Kanokpanont, T. Nakpheng, and T. Srichana (2010) The effect of sericin from various extraction methods on cell viability and collagen production. Int. J. Mol. Sci. 11: 2200–2211.

    Article  CAS  Google Scholar 

  31. Altman, G. H., F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan (2003) Silk-based biomaterials. Biomat. 24: 401–416.

    Article  CAS  Google Scholar 

  32. Panilaitis, B., G. H. Altman, J. Chen, H. J. Jin, V. Karageorgiou, and D. L. Kaplan (2003) Macrophage responses to silk. Biomaterials 24: 3079–3085.

    Article  CAS  Google Scholar 

  33. Wen, C. M., S. T. Ye, L. X. Zhou, and Y. Yu (1990) Silk-induced asthma in children — a report of 64 cases. Ann. Allergy 65: 375–378.

    CAS  Google Scholar 

  34. Chen, W. Q., H. Priewalder, J. P. P. John, and G. Lubec (2010) Silk cocoon of Bombyx mori: Proteins and posttranslational modifications — heavy phosphorylation and evidence for lysine-mediated cross links. Proteom. 10: 369–379.

    Article  CAS  Google Scholar 

  35. Miwa, N., K. Yokoyama, H. Wakabayashi, and N. Nio (2010) Effect of deamidation by protein-glutaminase on physicochemical and functional properties of skim milk. Int. Dairy J. 20: 393–399.

    Article  CAS  Google Scholar 

  36. Winkler, S., D. Wilson, and D. L. Kaplan (2000) Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochem. 39: 12739–12746.

    Article  CAS  Google Scholar 

  37. Stewart, R. J. and C. S. Wang (2010) Adaptation of caddisily larval silks to aquatic habitats by phosphorylation of H-fibroin serines. Biomacromol. 11: 969–974.

    Article  CAS  Google Scholar 

  38. Magee, A. I., L. Gutierrez, I. A. McKay, C. J. Marshall, and A. Hall (1987) Dynamic fatty acylation of P21N-RAS. Embo. J. 6: 3353–3357.

    CAS  Google Scholar 

  39. Minoura, N., S. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai (1995) Attachment and growth of cultured fibroblast cells on silk protein matrices. J. Biomed. Mater. Res. 29: 1215–1221.

    Article  CAS  Google Scholar 

  40. Huang, J., R. Valluzzi, E. Bini, B. Vernaglia, and D. L. Kaplan (2003) Cloning, expression, and assembly of sericin-like protein. J. Biol. Chem. 278: 46117–46123.

    Article  CAS  Google Scholar 

  41. Wu, W., W. J. Li, L. Q. Wang, K. H. Tu, and W. L. Sun (2006) Synthesis and characterization pH- and temperature-sensitive sericin/poly(N-isopropylacrylamide) interpenetrating polymer networks. Polym. Int. 55: 513–519.

    Article  CAS  Google Scholar 

  42. Tao, W., M. Z. Li, and R. J. Xie (2005) Preparation and structure of porous silk sericin materials. Macromol. Mater. Eng. 290: 188–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, X., Li, J. & Chen, Y. Proteomic analysis of sericin in Bombyx mori cocoons. Biotechnol Bioproc E 16, 438–444 (2011). https://doi.org/10.1007/s12257-010-0425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0425-0

Keywords

Navigation