Skip to main content
Log in

Biomass-derived volatile fatty acid platform for fuels and chemicals

  • Reviews
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The typical biorefinery platforms are sugar, thermochemical (syngas), carbon-rich chains, and biogas platforms, each offering unique advantages and disadvantages. The sugar platform uses hexose and pentose sugars extracted or converted from plant body mass. The thermochemical (syngas) platform entails a chemical or biological conversion process using pyrolysis or gasification of plants to produce biofuels. The carbon-rich chains platform is used to produce biodiesel from long-chain fatty acids or glycerides. In the present work, we suggest a new platform using volatile fatty acids (VFAs) for the production of biofuels and biochemicals production. The VFAs are short-chain fatty acids composed mainly of acetate and butyrate in the anaerobic digestion (AD) process, which does not need sterilization, additional hydrolysis enzymes (cellulose or xylanase), or a high cost pretreatment step. VFAs are easily produced from almost all kinds of biomass with low lignin content (terrestrial, aquatic, and marine biomass) by the AD process. Considering that raw material alone constitutes 40∼80% of biofuel production costs, biofuels made from VFAs derived from waste organic biomass potentially offer significant economical advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Campbell, J. E., D. B. Lobell, R. C. Genova, and C. B. Field (2008) The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 42: 5791–5794.

    Article  CAS  Google Scholar 

  2. Sanchez, O. J. and C. A. Cardona (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270–5295.

    Article  CAS  Google Scholar 

  3. Chynoweth, D. P. (2002) Review of biomethane from marine biomass (DRAFT). www.agen.ufl.edu/~chyn/download/Publications/DC/Reports/marinefinal_FT.pdf.

  4. Carlsson, A. S., J. B. Beilen, R. Möller, and D. Clayton (2007) Micro- and macro-algae: Utility for industrial applications. CPL Press, Berks RG14 1RZ, UK.

    Google Scholar 

  5. Klass, D. L. (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego, CA, USA.

    Google Scholar 

  6. Park, J. I., H. C. Woo, and J. H. Lee (2008) Production of bio-energy from marine algae: status and perspectives. Korean Chem. Eng. Res. 46: 833–844.

    CAS  Google Scholar 

  7. Drake, H. L., K. Küsel, and C. Matthies (2006) Acetogenic prokaryotes. Prokaryotes 2: 354–420.

    Article  Google Scholar 

  8. Datta, R. (1981) Acidogenic fermentation of corn stover. Biotechnol. Bioeng. 23: 61–77.

    Article  CAS  Google Scholar 

  9. Batstone, D. J., J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G. Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Siegrist, and V. A. Vavilin (2002) Anaerobic digestion model no. 1. IWA task group for mathematical modelling of anaerobic digestion processes staff, London, UK.

    Google Scholar 

  10. Chang, H. N., B. J. Kim, J. W. Kang, C. M. Jeong, N. J. Kim, and J. K. Park (2008) High cell density ethanol fermentation in an upflow packed-bed cell recycle bioreactor. Biotechnol. Bioprocess Eng. 13: 123–135.

    Article  CAS  Google Scholar 

  11. Holtzapple, M. T. and C. B. Granda (2008) Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Appl. Biochem. Biotechnol. 156: 95–106.

    Article  Google Scholar 

  12. Coyle, W. (2007) The future of biofuels: a global perspective. AMBER Waves 5: 24–29.

    Google Scholar 

  13. Holtzapple, M., M. Ross, N. Chang, V. Chang, S. Adelson, and C. Brazel (1999) Biomass conversion to mixed alcohol fuels using the MixAlco process. Appl. Biochem. Biotechnol. 79: 609–631.

    Article  Google Scholar 

  14. Agbogdo, F. K. (2005) Anaerobic fermentation of rice straw and chicken manure to carboxylic acids. Ph.D. Thesis. Texas A&M University, Texas, USA.

    Google Scholar 

  15. Thanakoses, P., A. S. Black, and M. T. Holtzapple (2003) Fermentation of corn stover to carboxylic acids. Biotechnol. Bioeng. 83: 191–200.

    Article  CAS  Google Scholar 

  16. Moody, A. G. (2006) Pilot-scale fermentation of office paper and chicken manure to carboxylic acids. M.S. Thesis. Texas A&M University, Texas, USA.

    Google Scholar 

  17. Lim, S. J., B. J. Kim, C. M. Jeong, J. Choi, Y. H. Ahn, and H. N. Chang (2008) Anaerobic organic acid production of food waste in once-a-day feeding and drawingoff bioreactor. Bioresour. Technol. 99: 7866–7874.

    Article  CAS  Google Scholar 

  18. Unpublished data in our study.

  19. Bain, R. L. (2007) World biofuels assessment worldwide biomass potential: Technology characterizations. NREL Milestone Report. NREL/MP-510-42467.

  20. Kann, B., P. R. Gruber, and M. Kamm (2007) Biorefineries — industrial processes and products: status quo and future directions. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

    Google Scholar 

  21. Lim, S. J., E. Y. Kim, Y. H. Ahn, and H. N. Chang (2008) Biological nutrient removal with volatile fatty acids from food wastes in sequencing batch reactor. Korean J. Chem. Eng. 25: 129–133.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Nam Chang.

Additional information

Both authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, H.N., Kim, NJ., Kang, J. et al. Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioproc E 15, 1–10 (2010). https://doi.org/10.1007/s12257-009-3070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3070-8

Keywords

Navigation