Skip to main content
Log in

Use of coconut coir fibers as an inert solid support for production of cyclosporin A

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In the present study, coconut coir was evaluated as an inert support for the production of cyclosporin A (CyA) using Tolypocladium inflatum MTCC 557 by solid state fermentation. Initially, four different inert supports such as coconut coir, polyurethane foam, polystyrene beads, and sugarcane baggase were screened using different production media as moistening agents for the maximum production of CyA. Different parameters such as fermentation time, carbon sources, moisture content, pH, and inoculum size were optimized. It was observed that coconut coir impregnated with medium modified with glycerol as carbon source, pH 6, at 80% moisture content, and inoculum size of 2.5 mL/2.5 g support produced 2641 mg/kg of CyA after 12 days as compared to 998 mg/kg before optimization. The yields were further increased to 3597 mg/kg substrate with addition of combination of amino acids after 48 h of fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pandey, A., C. R. Soccol, and D. A. Mitchell (2000) New developments in solid-state fermentation: I-bioprocesses and products. Process Biochem. 35: 1153–1169.

    Article  CAS  Google Scholar 

  2. Pandey, A., G. Szakacs, C. R. Soccol, A. Rodriguez, and V. T. Soccol (2001) Production, purification, and properties of microbial phytases. Bioresour. Technol. 77: 203–214.

    Article  CAS  Google Scholar 

  3. Barrios-González, J. and A. Mejía (1996) Production of secondary metabolites by solid-state fermentation. Biotechnol. Annu. Rev. 2: 85–121.

    Article  Google Scholar 

  4. Ooijkaas, L. P., F. J. Weber, R. M. Buitelaar, J. Tramper, and A. Rinzema (2000) Defined media and inert supports: their potential as solid state fermentation production systems. TIBTECH. 18: 356–360.

    CAS  Google Scholar 

  5. Zhu, Y., J. O. Smits, W. Knol, and J. Bol (1994) A novel solid-state fermentation system using polyurethane foam as inert carrier. Biotechnol. Lett. 16: 643–648.

    Article  CAS  Google Scholar 

  6. Aidoo, K. E., R. Hendry, and B. J. B. Wood (1982) Solid state fermentations. Adv. Appl. Microbiol. 28: 201–237.

    Article  CAS  Google Scholar 

  7. Tomasini, A., C. Fajardo, and J. Barrios-Gonzaíez (1997) Gibberellic acid production using different solidstate fermentation systems. W. J. Microbiol. Biotechnol. 13: 203–206.

    Article  CAS  Google Scholar 

  8. Nampoothiri, K. M. and A. Pandey (1996) Solid-state fermentation for L-glutamic acid production using Brevibacterium sp. Biotechnol. Lett. 18: 199–204.

    CAS  Google Scholar 

  9. Murado, M. A., M. P. González, A. Torrado, and L. M. Pastrana (1997) Amylase production by solid state culture of Aspergillus oryzae on polyurethane foams. Some mechanistic approaches from an empirical model. Process Biochem. 32: 35–42.

    Article  CAS  Google Scholar 

  10. Nagendra-Prabhu, G. and M. Chandrasekaran (1995) Polystyrene: an inert carrier for L-glutaminase production by marine Vibrio costicola under solid-state fermentation. W. J. Microbiol. Biotechnol. 11: 683–684.

    Article  Google Scholar 

  11. Gautam, P., A. Sabu, A. Pandey, G. Szakacs, and C. R. Soccol (2002) Microbial production of extra-cellular phytase using polystyrene as inert solid support. Bioresour. Technol. 83: 229–233.

    Article  CAS  Google Scholar 

  12. Weber, F. J., J. Tramper, and A. A Rinzema. (1999) A simplified material and energy balance approach for process development and scale-up of Coniothyrium minitans conidia production by solid-state cultivation in a packed-bed reactor. Biotechnol. Bioeng. 65: 447–458.

    Article  CAS  Google Scholar 

  13. Weber, F. J., J. Oostra, J. Tramper, and A. Rinzema (2002) Validation of a model for process development and scale-up of packed-bed solid-state bioreactors. Biotechnol. Bioeng. 77: 81–93.

    Article  CAS  Google Scholar 

  14. Lareo, C., A. F. Sposito, A. L. Bossio, and D. C. Volpe (2006) Characterization of growth and sporulation of Mucor bacilliformis in solid state fermentation on an inert support. Enz. Microbial. Technol. 38: 391–399.

    Article  CAS  Google Scholar 

  15. Marin-Cervantes, M. C., Y. Matsumoto, L. Ramı’ez-Coutino, Z. Rocha-Pino, G. Viniegra, and K. Shirai (2008) Effect of moisture content in polyurethane foams as support for solid-substrate fermentation of Lecanicillium lecanii on the production profiles of chitinases. Process Biochem. 43: 24–32.

    Article  CAS  Google Scholar 

  16. Ruckenstein, E. and X. B. Wang (1994) Production of lignin peroxidase by Phanerochaete chrysosporium immobilized on porous poly (styrenedivinylbenzene) carrier and its application to the degrading of 2- chlorophenol. Biotechnol Bioeng. 44: 79–86.

    Article  CAS  Google Scholar 

  17. Cuadra, T., F. J. Fernández, A Tomasini, and J. Barrios-González (2008) Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Letts. Appl. Microbiol. 46: 216–220.

    Article  CAS  Google Scholar 

  18. Gelmi, C., R. P’erez-Correa, M. Gonz’alez, and E. Agosin (2000) Solid substrate cultivation of Gibberella fujikuroi on an inert support. Process Biochem. 35: 1227–1233

    Article  CAS  Google Scholar 

  19. Auria, R., S. Hernandez, M. Raimbault, and S. Revah (1990) Ion exchange resin: a model support for solid state fermentation of Aspergillus niger. Biotechnol. Tech. 4: 391–396.

    Article  CAS  Google Scholar 

  20. Madamwar, D., S. Patel, and H. Parikh (1989) Fermentation for cellulose and b-glucosidase production by Aspergillus niger. J. Ferment. Bioeng. 47: 424–426.

    Article  Google Scholar 

  21. Peralta-Perez, M. R., G. Saucedo-Castaneda, and M. Gutierrez-Rojas (2001) SiO2 xerogel: a suitable inert support for microbial growth. J. Sol-Gel Sci. Technol. 20: 105–110.

    Article  CAS  Google Scholar 

  22. Silman, R. W., T. C. Nelsen, and R. J. Bothast (1991) Comparison of culture methods for production of Colletotrichum truncatum spores for use as a mycoherbicide. FEMS Microbiol. Lett. 79: 69–74.

    Article  CAS  Google Scholar 

  23. Kobel, H. and R. Traber (1982) Directed biosynthesis of cyclosporins. Euro. J. Appl. Microbiol. Biotechnol. 14: 237–240.

    Article  CAS  Google Scholar 

  24. Balaraman, K. and N. Mathew (2006) Optimization of media composition for the production of cyclosporin A by Tolypocladium species. Indian J. Med. Res. 123: 525–530.

    CAS  Google Scholar 

  25. Survase, S. A., N. S. Shaligram, R. C. Pansuriya, U. S. Annapure, and R. S. Singhal (2009) A novel medium for the enhanced production of cyclosporin A by Tolypocladium inflatum MTCC 557 using solid state fermentation. J. Microbiol. Biotechnol. 19: 462–467.

    Article  CAS  Google Scholar 

  26. Bai, R. S. and T. E. Abraham (2003) Studies on chromium (VI) adsorption-desorption using immobilized fungal biomass. Bioresour. Technol. 87: 17–26.

    Article  Google Scholar 

  27. Acharya, B. K., S. Mohana, and D. Madamwar (2008) Anaerobic treatment of distillery spent wash — A study on upflow anaerobic fixed film bioreactor. Bioresour. Technol. 99: 4621–4626.

    Article  CAS  Google Scholar 

  28. Ramana Murthy, M. V., E. V. S. Mohan, and A. K. Sadhukhan (1999) Cyclosporin A production by Tolypocladium inflatum using solid state fermentation. Process Biochem. 34: 269–280.

    Article  Google Scholar 

  29. Sekar, C., V. W. Rajasekar, and K. Balaraman (1997) Production of cyclosporin A by solid state fermentation. Bioprocess Eng. 17: 257–259.

    Article  CAS  Google Scholar 

  30. Pandey, A. (1992) Recent development in solid-state fermentation. Process Biochem. 27: 109–116.

    Article  CAS  Google Scholar 

  31. Prior, B. A., J. C. D. Preez, and P. W. Rein (1992) Environmental parameters. pp. 65–85. In: H. W. Doelle, D. A. Mitchell, and C. E. Rolz, (eds.). Solid Substrate Cultivation. Elsevier Applied Science, London, UK.

    Google Scholar 

  32. Lee, J. and S. Agathos (1989) Effect of amino acids on the production of cyclosporin A by T. inflatum. Biotechnol. Letts. 2: 77–82.

    Article  CAS  Google Scholar 

  33. Balakrishnan, K. and A. Pandey (1996) Influence of amino acids on the biosynthesis of cyclosporin A by Tolypocladium inflatum. Appl. Microbiol. Biotechnol. 45: 800–803.

    Article  CAS  Google Scholar 

  34. Nisha, A. K., S. Meignanalakshmi, and K. Ramasamy (2008) Comparative effect of amino acids in the production of cyclosporin A by solid and submerged fermentations. Biotechnology 7: 205–208.

    Article  CAS  Google Scholar 

  35. Haavik, H. I. (1981) Biosynthesis of bacitracin — role of precursors. FEMS Microbiol. Lett. 10: 111–114.

    Article  CAS  Google Scholar 

  36. Zocher, R., N. Madry, H. Peeters, and H. Kleinkauf (1984) Biosynthesis of cyclosporin A. Phytochemistry 23: 549–551.

    Article  CAS  Google Scholar 

  37. Sekar, C. and K. Balaraman (1998) Optimization studies on the production of cyclosporin A by solid state fermentation. Bioprocess Eng. 18: 293–296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikant A. Survase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Survase, S.A., Bacigalupi, C., Annapure, U.S. et al. Use of coconut coir fibers as an inert solid support for production of cyclosporin A. Biotechnol Bioproc E 14, 769–774 (2009). https://doi.org/10.1007/s12257-009-0121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0121-0

Keywords

Navigation