Skip to main content
Log in

Contribution of the vascular bone marrow niche to leukemia progression

  • short review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Abstract

Leukemia arises from leukemic stem cells, which reside within the bone marrow occupying two different stem cells niches: the endosteal and the vascular niche. The maintenance of leukemic stem cells requires complex regulation mediated by many intrinsic and extrinsic signals provided by their niche cells. The interaction of leukemic and endothelial cells can occur either via direct contact through cell adhesion molecules such as selectins or integrins or signals can be transmitted by chemokines or cytokines of which stromal cell-derived factor 1 represents the most studied. Experimental studies provide evidence that targeting molecules involved in the interaction of leukemic and endothelial cells might represent a promising therapeutic target. Indeed, first clinical trials considering this concept are currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112:4793–807.

    Article  CAS  PubMed  Google Scholar 

  2. Doan PL, Chute JP. The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia. 2012;26:54–62.

    Article  CAS  PubMed  Google Scholar 

  3. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M, et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood. 1997;89:1870–5.

    CAS  PubMed  Google Scholar 

  4. Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood. 2000;96:2240–5.

    CAS  PubMed  Google Scholar 

  5. Dilly SA, Jagger CJ. Bone marrow stromal cell changes in haematological malignancies. J Clin Pathol. 1990;43:942–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011;29:591–9.

    Article  PubMed  Google Scholar 

  7. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood. 1998;91:4523–30.

    CAS  PubMed  Google Scholar 

  8. Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood. 2004;104:550–7.

    Article  CAS  PubMed  Google Scholar 

  9. Juarez J, Dela Pena A, Baraz R, Hewson J, Khoo M, Cisterne A, et al. CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia. 2007;21:1249–57.

    Article  CAS  PubMed  Google Scholar 

  10. Liesveld JL, Bechelli J, Rosell K, Lu C, Bridger G, Phillips G, 2nd, et al. Effects of AMD3100 on transmigration and survival of acute myelogenous leukemia cells. Leuk Res. 2007;31:1553–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113:6215–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Stamatopoulos B, Meuleman N, De Bruyn C, Pieters K, Mineur P, Le Roy C, et al. AMD3100 disrupts the cross-talk between chronic lymphocytic leukemia cells and a mesenchymal stromal or nurse-like cell-based microenvironment: pre-clinical evidence for its association with chronic lymphocytic leukemia treatments. Haematologica. 2012;97:608–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Herrmann H, Cerny-Reiterer S, Sadovnik I, Winter V, Blatt K, Rabitsch W, et al. Identification of Novel Surface Markers and Targets in Neoplastic Stem Cells in AML and CML: a Flow-Gene-Flow Screen Approach. Blood (ASH Annual Meeting Abstracts). 2010;116:3382.

    Article  Google Scholar 

  14. Smith-Berdan S, Nguyen A, Hassanein D, Zimmer M, Ugarte F, Ciriza J, et al. Robo4 cooperates with CXCR4 to specify hematopoietic stem cell localization to bone marrow niches. Cell Stem Cell. 2011;8:72–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Smith-Berdan S, Schepers K, Ly A, Passegue E, Forsberg EC. Dynamic expression of the Robo ligand Slit2 in bone marrow cell populations. Cell Cycle. 2012;11:675–82.

    Article  CAS  PubMed  Google Scholar 

  16. ter Huurne M, Figdor CG, Torensma R. Hematopoietic stem cells are coordinated by the molecular cues of the endosteal niche. Stem Cells Dev. 2010;19:1131–41.

    Article  CAS  PubMed  Google Scholar 

  17. Mazo IB, Gutierrez-Ramos JC, Frenette PS, Hynes RO, Wagner DD, von Andrian UH. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J Exp Med. 1998;188:465–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18:1651–7.

    Article  CAS  PubMed  Google Scholar 

  19. Pezeshkian B, Donnelly C, Tamburo K, Geddes T, Madlambayan GJ. Leukemia mediated endothelial cell activation modulates leukemia cell susceptibility to chemotherapy through a positive feedback loop mechanism. PLoS One. 2013;8:e60823.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Krause DS, Lazarides K, Lewis JB, von Andrian UH, Van Etten RA. Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic stem cells in the bone marrow niche. Blood. 2014;123:1361–71.

    Article  CAS  PubMed  Google Scholar 

  21. Wicklein D, Schmidt A, Labitzky V, Ullrich S, Valent P, Schumacher U. E- and p-selectins are essential for repopulation of chronic myelogenous and chronic eosinophilic leukemias in a scid mouse xenograft model. PLoS One. 2013;8:e70139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10:64–71.

    Article  CAS  PubMed  Google Scholar 

  23. Williams DA, Rios M, Stephens C, Patel VP. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature. 1991;352:438–41.

    Article  CAS  PubMed  Google Scholar 

  24. Rettig MP, Ansstas G, DiPersio JF. Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia. 2012;26:34–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003;9:1158–65.

    Article  CAS  PubMed  Google Scholar 

  26. Magyarosy E, Sebestyen A, Timar J. Expression of metastasis associated proteins, CD44v6 and NM23-H1, in pediatric acute lymphoblastic leukemia. Anticancer Res. 2001;21:819–23.

    CAS  PubMed  Google Scholar 

  27. Zarcone D, De Rossi G, Tenca C, Marroni P, Mauro FR, Cerruti GM, et al. Functional and clinical relevance of CD44 variant isoform expression on B-cell chronic lymphocytic leukemia cells. Haematologica. 1998;83:1088–98.

    CAS  PubMed  Google Scholar 

  28. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12:1167–74.

    Article  PubMed  Google Scholar 

  29. Charrad RS, Li Y, Delpech B, Balitrand N, Clay D, Jasmin C, et al. Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nat Med. 1999;5:669–76.

    Article  CAS  PubMed  Google Scholar 

  30. Wellbrock J, Fiedler W. Clinical experience with antiangiogenic therapy in leukemia. Curr Cancer Drug Targets. 2011;11:1053–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Fiedler MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wellbrock, J., Fiedler, W. Contribution of the vascular bone marrow niche to leukemia progression. memo 7, 198–201 (2014). https://doi.org/10.1007/s12254-014-0149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-014-0149-5

Keywords

Navigation