Skip to main content

Advertisement

Log in

Identification of Potential miRNAs Biomarkers for High-Grade Prostate Cancer by Integrated Bioinformatics Analysis

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

The increasing number of datasets available in the GEO database offers a new approach to identify new miRNAs related to PCa. The aim of our study was to suggest a miRNA signature for the detection of high-grade PCa (Gleason score ≥ 7) using bioinformatics tools. Three mRNA datasets (GSE26022, GSE30521, GSE46602) were selected to identify the differentially expressed genes (DEGs) in high-grade PCa. Furthermore, two miRNA datasets (GSE45604, GSE46738) were analyzed to select the differentially expressed miRNAs (DEMs). Functional and pathway enrichment analysis was performed using DAVID and a protein-protein interaction network (PPI) was constructed through STRING. Besides, miRNAs which regulate hub genes were predicted using microRNA.org. A total of 973 DEGs were identified after the analyses of the mRNA datasets, enriched in key mechanisms underlying PCa development. Furthermore, we identified 10 hub genes (EGFR, VEGFA, IGF1, PIK3R1, CD44, ITGB4, ANXA1, BCL2, LPAR3, LPAR1). The most significant KEGG Pathway was PI3K-Akt signaling pathway, involved in cell proliferation and survival. Moreover, we identified 30 common miRNAs between significant DEMs and the predicted hub gene regulators. Twelve of these miRNAs (miR-1, −365, −132, −195, −133a, −133b, −200c, −339, −222, −21, −221, −708) regulate two or more hub genes identified in our study. We suggested a signature including these 12 miRNAs for high-grade PCa detection. These miRNAs have been associated with aggressive PCa, poor survival and resistance to treatment in the last years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Lepor H, Donin NM (2014) Gleason 6 prostate cancer: serious malignancy or toothless lion? Oncology (Williston Park) 28:16–22

    Google Scholar 

  3. Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, Wallace TA, Liu CG, Volinia S, Calin GA, Yfantis HG, Stephens RM, Croce CM (2008) Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68:6162–6170

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Scher HI, Sawyers CL (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23:8253–8261

    CAS  PubMed  Google Scholar 

  5. Gao L, Alumkal J (2010) Epigenetic regulation of androgen receptor signaling in prostate cancer. Epigenetics 5:100–104

    CAS  PubMed  Google Scholar 

  6. Filella X, Foj L (2017) miRNAs as novel biomarkers in the management of prostate cancer. Clin Chem Lab Med 55:715–736

    CAS  PubMed  Google Scholar 

  7. Agell L, Hernández S, Nonell L, Lorenzo M, Puigdecanet E, de Muga S, Juanpere N, Bermudo R, Fernández PL, Lorente JA, Serrano S, Lloreta J (2012) A 12-gene expression signature is associated with aggressive histological in prostate cancer: SEC14L1 and TCEB1 genes are potential markers of progression. Am J Pathol 181:1585–1594

    CAS  PubMed  Google Scholar 

  8. Mortensen MM, Høyer S, Lynnerup AS, Ørntoft TF, Sørensen KD, Borre M, Dyrskjøt L (2015) Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Sci Rep 5:16018

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Casanova-Salas I, Rubio-Briones J, Calatrava A, Mancarella C, Masiá E, Casanova J, Fernández-Serra A, Rubio L, Ramírez-Backhaus M, Armiñán A, Domínguez-Escrig J, Martínez F, García-Casado Z, Scotlandi K, Vicent MJ, López-Guerrero JA (2014) Identification of miR-187 and miR-182 as biomarkers of early diagnosis and prognosis in patients with prostate cancer treated with radical prostatectomy. J Urol 192:252–259

    CAS  PubMed  Google Scholar 

  10. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 41:D991–D995

    CAS  PubMed  Google Scholar 

  11. Da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    CAS  Google Scholar 

  12. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101

    CAS  PubMed  Google Scholar 

  14. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    CAS  PubMed  Google Scholar 

  15. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90

    PubMed  PubMed Central  Google Scholar 

  17. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW (2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284:31–53

    CAS  PubMed  Google Scholar 

  18. Di Lorenzo G, Tortora G, D'Armiento FP, De Rosa G, Staibano S, Autorino R et al (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8:3438–3444

    PubMed  Google Scholar 

  19. Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19:6550–6565

    CAS  PubMed  Google Scholar 

  20. Baek KH, Hong ME, Jung YY, Lee CH, Lee TJ, Park ES, Kim MK, Yoo JH, Lee SW (2012) Correlation of AR, EGFR, and HER2 expression levels in prostate Cancer: Immunohistochemical analysis and chromogenic in situ hybridization. Cancer Res Treat 44:50–56

    PubMed  PubMed Central  Google Scholar 

  21. Sridhar SS, Hotte SJ, Chin JL, Hudes GR, Gregg R, Trachtenberg J, Wang L, Tran-Thanh D, Pham NA, Tsao MS, Hedley D, Dancey JE, Moore MJ (2010) A multicenter phase II clinical trial of lapatinib (GW572016) in hormonally untreated advanced prostate cancer. Am J Clin Oncol 33:609–613

    CAS  PubMed  Google Scholar 

  22. Brizzolara A, Benelli R, Venè R, Barboro P, Poggi A, Tosetti F, Ferrari N (2017) The ErbB family and androgen receptor signaling are targets of celecoxib in prostate cancer. Cancer Lett 400:9–17

    CAS  PubMed  Google Scholar 

  23. Thamilselvan V, Menon M, Stein GS, Valeriote F, Thamilselvan S (2017) Combination of Carmustine and selenite inhibits EGFR mediated growth signaling in androgen-independent prostate Cancer cells. J Cell Biochem 118:4331–4340

    CAS  PubMed  Google Scholar 

  24. Jiang X, Chen S, Asara JM, Balk SP (2010) Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits. J Biol Chem 285:14980–14989

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mithal P, Allott E, Gerber L, Reid J, Welbourn W, Tikishvili E, Park J, Younus A, Sangale Z, Lanchbury JS, Stone S, Freedland SJ (2014) PTEN loss in biopsy tissue predicts poor clinical outcomes in prostate cancer. Int J Urol 21:1209–1214

    CAS  PubMed  Google Scholar 

  26. Xie H, Xie B, Liu C, Wang J, Xu Y (2017) Association of PTEN expression with biochemical recurrence in prostate cancer: results based on previous reports. Onco Targets Ther 10:5089–5097

    PubMed  PubMed Central  Google Scholar 

  27. Liu L, Dong X (2014) Complex impacts of PI3K/AKT inhibitors to androgen receptor gene expression in prostate cancer cells. PLoS One 9:e108780

    PubMed  PubMed Central  Google Scholar 

  28. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, Arora VK, le C, Koutcher J, Scher H, Scardino PT, Rosen N, Sawyers CL (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19:575–586

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 284:5731–5741

    CAS  PubMed  Google Scholar 

  30. Reddy SD, Ohshiro K, Rayala SK, Kumar R (2008) MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 68:8195–8200

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang YL, Zhou PJ, Wei L, Li W, Ji Z, Fang YX, Gao WQ (2015) MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. Oncotarget 6:24017–24031

    PubMed  PubMed Central  Google Scholar 

  32. Kalinowski FC, Giles KM, Candy PA, Ali A, Ganda C, Epis MR, Webster RJ, Leedman PJ (2012) Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7. PLoS One 7:e47067

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Z, Jiang Z, Huang J, Huang S, Li Y, Yu S et al (2014) miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways. Int J Oncol 44:1571–1580

    CAS  PubMed  Google Scholar 

  34. Folini M, Gandellini P, Longoni N, Profumo V, Callari M, Pennati M, Colecchia M, Supino R, Veneroni S, Salvioni R, Valdagni R, Daidone M, Zaffaroni N (2010) miR-21: an oncomir on strike in prostate cancer. Mol Cancer 9:12

    PubMed  PubMed Central  Google Scholar 

  35. Li T, Li D, Sha JJ, Sun P, Huang YR (2009) MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383:280–285

    CAS  PubMed  Google Scholar 

  36. Coppola V, Musumeci M, Patrizii M, Cannistraci A, Addario A, Maugeri-Saccà M, Biffoni M, Francescangeli F, Cordenonsi M, Piccolo S, Memeo L, Pagliuca A, Muto G, Zeuner A, de Maria R, Bonci D (2013) BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial–mesenchymal transition. Oncogene 32:1843–1853

    CAS  PubMed  Google Scholar 

  37. Ayub SG, Kaul D, Ayub T (2015) Microdissecting the role of micro-RNAs in the pathogenesis of prostate cancer. Cancer Gene 208:289–302

    CAS  Google Scholar 

  38. Qu W, Ding SM, Cao G, Wang SJ, Zheng XH, Li GH (2016) miR-132 mediates a metabolic shift in prostate cancer cells by targeting Glut1. FEBS Open Bio 6:735–741

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Tao T, Liu C, Guan H, Huang Y, Xu B et al (2016) Downregulation of miR-195 promotes prostate cancer progression by targeting HMGA1. Oncol Rep 36:376–382

    CAS  PubMed  Google Scholar 

  40. McDonald AC, Vira M, Shen J, Sanda M, Raman JD, Liao J et al (2018) Circulating microRNAs in plasma as potential biomarkers for the early detection of prostate cancer. Prostate 78:411–418

    CAS  PubMed  Google Scholar 

  41. Culig Z (2014) Proinflammatory cytokine interleukin-6 in prostate carcinogenesis. Am J Clin Exp Urol 2:231–238

    PubMed  PubMed Central  Google Scholar 

  42. Goto Y, Kojima S, Nishikawa R, Kurozumi A, Kato M, Enokida H, Matsushita R, Yamazaki K, Ishida Y, Nakagawa M, Naya Y, Ichikawa T, Seki N (2015) MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker. Br J Cancer 113:1055–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun T, Wang X, He HH, Sweeney CJ, Liu SX, Brown M, Balk S, Lee GSM, Kantoff PW (2014) MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene 33:2790–2800

    CAS  PubMed  Google Scholar 

  44. Yang X, Yang Y, Gan R, Zhao L, Li W, Zhou H, Wang X, Lu J, Meng QH (2014) Downregulation of mir-221 and mir-222 restrain prostate cancer cell proliferation and migration that is partly mediated by activation of SIRT1. PLoS One 9:e98833

    PubMed  PubMed Central  Google Scholar 

  45. Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM et al (2008) MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68:2773–2780

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kojima S, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nohata N, Fuse M, Ichikawa T, Naya Y, Nakagawa M, Seki N (2012) Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer 106:405–413

    CAS  PubMed  Google Scholar 

  47. Chang YS, Chen WY, Yin JJ, Sheppard-Tillman H, Huang J, Liu YN (2015) EGF receptor promotes prostate Cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Res 75:3077–3086

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Matin F, Jeet V, Clements JA, Yousef GM, Batra J (2016) MicroRNA Theranostics in prostate Cancer precision medicine. Clin Chem 62:1318–1333

    CAS  PubMed  Google Scholar 

  49. Chen C, Huang X, Wang Y, Lin L, Liu L, Li G, Wu S, Xu C, Zhou J, Shuai X (2017) Polymeric vector-mediated delivery of an miR-21 inhibitor for prostate cancer treatment. RSC Adv 7:11057–11066

    CAS  Google Scholar 

  50. Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M, Bonanno E, Muto G, Frajese GV, de Maria R, Spagnoli LG, Farace MG, Ciafrè SA (2008) The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 3:e4029

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Filella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foj, L., Filella, X. Identification of Potential miRNAs Biomarkers for High-Grade Prostate Cancer by Integrated Bioinformatics Analysis. Pathol. Oncol. Res. 25, 1445–1456 (2019). https://doi.org/10.1007/s12253-018-0508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-0508-3

Keywords

Navigation