Skip to main content

Advertisement

Log in

MicroRNA-Mediated Post-Transcriptional Regulation of Epithelial to Mesenchymal Transition in Cancer

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Epithelial to mesenchymal transition (EMT) program participates in tissue repair, embryogenesis and numerous pathological conditions, particularly cancer progression and tumor metastasis. A highly complex and strongly controlled post-transcriptionally regulated network of microRNAs (miRNAs) regulates the EMT process. miRNAs are critical parts of the post-transcriptional regulation of gene expression. A set of miRNAs target multiple components of major signaling pathways and downstream effectors of EMT. miRNAs associated with this process are involved in controlling tumor progression and invasiveness either as oncogenes or as tumor suppressors. Since several miRNAs directly affect EMT-related master regulators, they have been discovered to have the potential to be used as biomarkers or targets in EMT-based pathological conditions such as cancer. Therefore, comprehensive understanding of miRNA-EMT correlation with tumor metastatic spread may provide improvements to diagnostic tools or therapeutics for cancer. This review summarizes our current knowledge about some of these important miRNAs and focuses on their specific roles in regulation of the EMT process in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

EMT:

Epithelial to mesenchymal transition

MET:

Mesenchymal to epithelial transition

EMT-TFs:

EMT transcription factors

TGF-β:

Transforming growth factor beta

miRNAs:

microRNAs

oncomiRs:

Oncogenic miRNAs

TSmiRs:

Tumor suppressor miRNAs

EGF:

Epidermal Growth Factor

FGF:

Fibroblast growth factor

HGF:

Hepatocyte Growth Factor

PDGF:

Platelet Derived Growth Factor

VEGF:

Vascular endothelial growth factor

ZEB:

Zinc finger E-box binding homeobox

LIFR:

Leukemia inhibitory factor receptor

YAP:

Yes-associated protein

ATC:

Anaplastic thyroid carcinoma

hECSs:

Human embryonic stem cells

HNSCC:

Head and neck squamous cell carcinoma

HCC:

Hepatocellular carcinoma

NSCLC:

Non-small cell lung cancer

CRC:

Colorectal cancer

PCa:

Prostate cancer

CEA:

Carcinoembryonic antigen

Let-7:

Lethal-7

RKIP:

Raf kinase inhibitory protein

3′-UTR:

3′-untranslated region

References

  1. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110

    Article  CAS  PubMed  Google Scholar 

  2. Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342(6159):1234850

    Article  PubMed  CAS  Google Scholar 

  3. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428

    Article  CAS  PubMed  Google Scholar 

  4. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    Article  CAS  PubMed  Google Scholar 

  5. Thiery JP (2003) Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15(6):740–746

    Article  CAS  PubMed  Google Scholar 

  6. Ocaña OH, Córcoles R, Fabra Á, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA (2012) Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22(6):709–724

    Article  PubMed  CAS  Google Scholar 

  7. Lamouille S, Subramanyam D, Blelloch R, Derynck R (2013) Regulation of epithelial–mesenchymal and mesenchymal–epithelial transitions by microRNAs. Curr Opin Cell Biol 25(2):200–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  9. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gavert N, Ben-Ze’ev A (2008) Epithelial–mesenchymal transition and the invasive potential of tumors. Trends Mol Med 14(5):199–209

    Article  CAS  PubMed  Google Scholar 

  11. Voutsadakis IA (2016) Epithelial-mesenchymal transition (EMT) and regulation of EMT factors by steroid nuclear receptors in breast cancer: a review and in Silico investigation. J Clin Med 5(1). doi:10.3390/jcm5010011

  12. Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3(3):155–166. doi:10.1038/nrm757

    Article  CAS  PubMed  Google Scholar 

  13. Grau Y, Carteret C, Simpson P (1984) Mutations and chromosomal rearrangements affecting the expression of snail, a Gene involved in embryonic patterning in Drosophila melanogaster. Genetics 108(2):347–360

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24(1):306–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Shi J, Chai K, Ying X, Zhou BP (2013) The role of snail in EMT and tumorigenesis. Curr Cancer Drug Targets 13(9):963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hemavathy K, Ashraf SI, Ip YT (2000) Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 257(1):1–12

    Article  CAS  PubMed  Google Scholar 

  17. Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD, Chodosh LA (2005) The transcriptional repressor snail promotes mammary tumor recurrence. Cancer Cell 8(3):197–209. doi:10.1016/j.ccr.2005.07.009

    Article  CAS  PubMed  Google Scholar 

  18. Chen WJ, Wang H, Tang Y, Liu CL, Li HL, Li WT (2010) Multidrug resistance in breast cancer cells during epithelial-mesenchymal transition is modulated by breast cancer resistant protein. Chin J Cancer 29(2):151–157

    Article  PubMed  Google Scholar 

  19. Medici D, Hay ED, Olsen BR (2008) Snail and slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell 19(11):4875–4887. doi:10.1091/mbc.E08-05-0506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y-N, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O, Hu D, Wan Y, Seng V, Sheppard-Tillman H (2012) Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor β-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol 32(5):941–953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Vandewalle C, Van Roy F, Berx G (2009) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66(5):773–787. doi:10.1007/s00018-008-8465-8

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A (2012) EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 69(20):3429–3456. doi:10.1007/s00018-012-1122-2

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe O, Imamura H, Shimizu T, Kinoshita J, Okabe T, Hirano A, Yoshimatsu K, Konno S, Aiba M, Ogawa K (2004) Expression of twist and wnt in human breast cancer. Anticancer Res 24(6):3851–3856

    CAS  PubMed  Google Scholar 

  24. Martin TA, Goyal A, Watkins G, Jiang WG (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12(6):488–496. doi:10.1245/ASO.2005.04.010

    Article  PubMed  Google Scholar 

  25. Kwok WK, Ling MT, Lee TW, Lau TC, Zhou C, Zhang X, Chua CW, Chan KW, Chan FL, Glackin C, Wong YC, Wang X (2005) Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res 65(12):5153–5162. doi:10.1158/0008-5472.CAN-04-3785

    Article  CAS  PubMed  Google Scholar 

  26. Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF (2002) Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 161(5):1881–1891. doi:10.1016/S0002-9440(10)64464-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939. doi:10.1016/j.cell.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  28. Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47(8):1127–1137

    Article  CAS  PubMed  Google Scholar 

  29. Baranwal S, Alahari SK (2010) miRNA control of tumor cell invasion and metastasis. Int J Cancer 126(6):1283–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu X, Fortin K, Mourelatos Z (2008) MicroRNAs: biogenesis and molecular functions. Brain Pathol 18(1):113–121

    Article  CAS  PubMed  Google Scholar 

  31. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Babashah S (2014) MicroRNAs: key regulators of oncogenesis. Springer International Publishing, Switzerland

    Book  Google Scholar 

  33. Pencheva N, Tavazoie SF (2013) Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 15(6):546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang T, Alvarez A, Hu B, Cheng S-Y (2013) Noncoding RNAs in cancer and cancer stem cells. Chinese journal of cancer 32(11):582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    Article  CAS  PubMed  Google Scholar 

  37. Sevignani C, Calin GA, Siracusa LD, Croce CM (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17(3):189–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Szafranska A, Davison T, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn S (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26(30):4442–4452

    Article  CAS  PubMed  Google Scholar 

  39. Bandyopadhyay S, Mitra R, Maulik U, Zhang MQ (2010) Development of the human cancer microRNA network. Silence 1(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhong X, Coukos G, Zhang L (2012) miRNAs in human cancer. In: Next-Generation MicroRNA Expression Profiling Technology Springer, pp 295–306

  41. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12

    Article  CAS  PubMed  Google Scholar 

  42. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  43. Díaz-López A, Moreno-Bueno G, Cano A (2014) Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res 6:205

    PubMed  PubMed Central  Google Scholar 

  44. Bullock MD, Sayan AE, Packham GK, Mirnezami AH (2012) MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell 104(1):3–12

    Article  CAS  PubMed  Google Scholar 

  45. Ghahhari NM, Babashah S (2015) Interplay between microRNAs and WNT/beta-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer 51(12):1638–1649. doi:10.1016/j.ejca.2015.04.021

    Article  CAS  PubMed  Google Scholar 

  46. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 11(9):670–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hill L, Browne G, Tulchinsky E (2013) ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer. Int J Cancer 132(4):745–754

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Yin J, Abou-Kheir W, Hynes P, Casey O, Fang L, Yi M, Stephens R, Seng V, Sheppard-Tillman H (2013) MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 32(3):296–306

    Article  CAS  PubMed  Google Scholar 

  50. Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7(20):3112–3117

    Article  CAS  PubMed  Google Scholar 

  51. Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U, Hermeking H (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10(24):4256–4271

    Article  CAS  PubMed  Google Scholar 

  52. Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, Lee DH, Borin JF, Naslund MJ, Alexander RB (2011) MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic acids research: gkr1222

  53. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, Liu C-G, Volinia S, Croce CM, Schmittgen TD (2008) Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68(13):5049–5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nohata N, Sone Y, Hanazawa T, Fuse M, Kikkawa N, Yoshino H, Chiyomaru T, Kawakami K, Enokida H, Nakagawa M (2011) miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma. Oncotarget 2 (1–2):29

  55. Suzuki H, Takatsuka S, Akashi H, Yamamoto E, Nojima M, Maruyama R, Kai M, H-o Y, Sasaki Y, Tokino T (2011) Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res 71(17):5646–5658

    Article  CAS  PubMed  Google Scholar 

  56. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6(8):622–634

    Article  CAS  PubMed  Google Scholar 

  57. Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, Gupta S, Liang H, Lin H-K, Hung M-C (2012) LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 18(10):1511–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) Mir-29 regulates mcl-1 protein expression and apoptosis. Oncogene 26(42):6133–6140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA (2009) MicroRNA 29b functions in acute myeloid leukemia. Blood 114(26):5331–5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fang JH, Zhou HC, Zeng C, Yang J, Liu Y, Huang X, Zhang JP, Guan XY, Zhuang SM (2011) MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology 54(5):1729–1740

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y-K, Wang H, Leng Y, Li Z-L, Yang Y-F, Xiao F-J, Li Q-F, Chen X-Q, Wang L-S (2011) Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating mcl-1. Biochem Biophys Res Commun 414(1):233–239

    Article  CAS  PubMed  Google Scholar 

  62. Chou J, Lin JH, Brenot A, J-w K, Provot S, Werb Z (2013) GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 15(2):201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB (2012) miRNA-29b suppresses prostate cancer metastasis by regulating epithelial–mesenchymal transition signaling. Mol Cancer Ther 11(5):1166–1173

    Article  CAS  PubMed  Google Scholar 

  64. Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 127(1):118–126

    Article  CAS  PubMed  Google Scholar 

  65. Wu Q, Lu Z, Li H, Lu J, Guo L, Ge Q (2011) Next-generation sequencing of microRNAs for breast cancer detection. Biomed Res Int 2011

  66. Gebeshuber CA, Zatloukal K, Martinez J (2009) miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10(4):400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baffa R, Fassan M, Volinia S, O’Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219(2):214–221

    Article  CAS  PubMed  Google Scholar 

  68. Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, Papotti M, Allgayer H (2012) MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer 130(9):2044–2053

    Article  CAS  PubMed  Google Scholar 

  69. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    Article  CAS  PubMed  Google Scholar 

  70. Bandrés E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M (2006) Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47(3):897–907

    Article  CAS  PubMed  Google Scholar 

  72. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67(13):6130–6135

    Article  CAS  PubMed  Google Scholar 

  73. Yan L-X, Huang X-F, Shao Q, Huang M-Y, Deng L, Wu Q-L, Zeng Y-X, Shao J-Y (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14(11):2348–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kao C, Martiniez A, Shi X, Yang J, Evans C, Dobi A, Devere White R, Kung H (2014) miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene 33(19):2495–2503

    Article  CAS  PubMed  Google Scholar 

  75. Yao J, Liang L, Huang S, Ding J, Tan N, Zhao Y, Yan M, Ge C, Zhang Z, Chen T (2010) MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology 51(3):846–856

    CAS  PubMed  Google Scholar 

  76. Braun J, Hoang-Vu C, Dralle H, Hüttelmaier S (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29(29):4237–4244

    Article  CAS  PubMed  Google Scholar 

  77. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim NH, Kim HS, Li X-Y, Lee I, Choi H-S, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition. J Cell Biol 195(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T (2010) A MicroRNA targeting dicer for metastasis control. Cell 141(7):1195–1207

    Article  CAS  PubMed  Google Scholar 

  80. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    Article  CAS  PubMed  Google Scholar 

  81. Georges SA, Biery MC, S-y K, Schelter JM, Guo J, Chang AN, Jackson AL, Carleton MO, Linsley PS, Cleary MA (2008) Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res 68(24):10105–10112

    Article  CAS  PubMed  Google Scholar 

  82. Pichiorri F, Suh S-S, Rocci A, De Luca L, Taccioli C, Santhanam R, Zhou W, Benson DM, Hofmainster C, Alder H (2010) Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18(4):367–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, Ørntoft TF, Andersen CL, Dobbelstein M (2008) p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68(24):10094–10104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Q, He X, Ma L, Li N, Yang J, Cheng Y, Cui H (2011) Expression and significance of microRNAs in the p53 pathway in ovarian cancer cells and serous ovarian cancer tissues. Zhonghua zhong liu za zhi [Chinese journal of oncology] 33(12):885–890

    CAS  Google Scholar 

  85. Lewis BC, Klimstra DS, Socci ND, Xu S, Koutcher JA, Varmus HE (2005) The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Mol Cell Biol 25(4):1228–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ridgeway A, McMenamin J, Leder P (2006) P53 levels determine outcome during β-catenin tumor initiation and metastasis in the mammary gland and male germ cells. Oncogene 25(25):3518–3527

    Article  CAS  PubMed  Google Scholar 

  87. Chen Y-W, Klimstra DS, Mongeau ME, Tatem JL, Boyartchuk V, Lewis BC (2007) Loss of p53 and Ink4a/Arf cooperate in a cell autonomous fashion to induce metastasis of hepatocellular carcinoma cells. Cancer Res 67(16):7589–7596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hansen JE, Fischer LK, Chan G, Chang SS, Baldwin SW, Aragon RJ, Carter JJ, Lilly M, Nishimura RN, Weisbart RH (2007) Antibody-mediated p53 protein therapy prevents liver metastasis in vivo. Cancer Res 67(4):1769–1774

    Article  CAS  PubMed  Google Scholar 

  89. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829

    Article  CAS  PubMed  Google Scholar 

  90. Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon Y-J, Volinia S, Pineau P, Marchio A, Palatini J, Suh S-S (2011) p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208(5):875–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Park S-M, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    Article  CAS  PubMed  Google Scholar 

  93. Díaz-Martín J, Díaz-López A, Moreno-Bueno G, Castilla M, Rosa-Rosa JM, Cano A, Palacios J (2014) A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition. J Pathol 232(3):319–329

    Article  PubMed  CAS  Google Scholar 

  94. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6):582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celià-Terrassa T, Mercatali L, Khan Z, Goodarzi H, Hua Y (2011) Direct targeting of Sec23a by miR-200 s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17(9):1101–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Neves R, Scheel C, Weinhold S, Honisch E, Iwaniuk KM, Trompeter H-I, Niederacher D, Wernet P, Santourlidis S, Uhrberg M (2010) Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC research notes 3(1):219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Castilla MÁ, Díaz-Martín J, Sarrió D, Romero-Pérez L, López-García MÁ, Vieites B, Biscuola M, Ramiro-Fuentes S, Isacke CM, Palacios J (2012) MicroRNA-200 family modulation in distinct breast cancer phenotypes. PLoS One 7(10):e47709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, Harris CC, Chen K, Hamilton SR, Zhang W (2011) Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 6(3):e17745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kimura S, Naganuma S, Susuki D, Hirono Y, Yamaguchi A, Fujieda S, Sano K, Itoh H (2010) Expression of microRNAs in squamous cell carcinoma of human head and neck and the esophagus: miR-205 and miR-21 are specific markers for HNSCC and ESCC. Oncol Rep 23(6):1625–1633

    CAS  PubMed  Google Scholar 

  102. Tran N, McLean T, Zhang X, Zhao CJ, Thomson JM, O’Brien C, Rose B (2007) MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun 358(1):12–17

    Article  CAS  PubMed  Google Scholar 

  103. Wu H, Zhu S, Mo Y-Y (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19(4):439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gandellini P, Folini M, Longoni N, Pennati M, Binda M, Colecchia M, Salvioni R, Supino R, Moretti R, Limonta P (2009) miR-205 exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cε. Cancer Res 69(6):2287–2295

    Article  CAS  PubMed  Google Scholar 

  105. Matsushima K, Isomoto H, Yamaguchi N, Inoue N, Machida H, Nakayama T, Hayashi T, Kunizaki M, Hidaka S, Nagayasu T (2011) MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells. BioMed Central Limited

    Google Scholar 

  106. Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, Chen Y, Deng G, Tanaka Y, Dahiya R (2011) Regulatory role of miR-203 in prostate cancer progression and metastasis. Clin Cancer Res 17(16):5287–5298

    Article  CAS  PubMed  Google Scholar 

  107. Zhang Z, Zhang B, Li W, Fu L, Fu L, Zhu Z, Dong J-T (2011) Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes & cancer 2(8):782–791

    Article  CAS  Google Scholar 

  108. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. doi:10.1038/35002607

    Article  CAS  PubMed  Google Scholar 

  109. Esquela-Kerscher A, Johnson SM, Bai L, Saito K, Partridge J, Reinert KL, Slack FJ (2005) Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system. Dev Dyn 234(4):868–877. doi:10.1002/dvdy.20572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee H, Han S, Kwon CS, Lee D (2016) Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 7(2):100–113. doi:10.1007/s13238-015-0212-y

    Article  CAS  PubMed  Google Scholar 

  111. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647. doi:10.1016/j.cell.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  112. Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS, Brown M, Hammond S, Srour EF, Liu Y, Nakshatri H (2009) Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res 37(14):4850–4861. doi:10.1093/nar/gkp500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    Article  CAS  PubMed  Google Scholar 

  114. Romero-Pérez L, Castilla MÁ, López-García MÁ, Díaz-Martín J, Biscuola M, Ramiro-Fuentes S, Oliva E, Matias-Guiu X, Prat J, Cano A (2013) Molecular events in endometrial carcinosarcomas and the role of high mobility group AT-hook 2 in endometrial carcinogenesis. Hum Pathol 44(2):244–254

    Article  PubMed  CAS  Google Scholar 

  115. Yun J, Frankenberger CA, Kuo WL, Boelens MC, Eves EM, Cheng N, Liang H, Li WH, Ishwaran H, Minn AJ (2011) Signalling pathway for RKIP and let-7 regulates and predicts metastatic breast cancer. EMBO J 30(21):4500–4514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Heo I, Joo C, Cho J, Ha M, Han J, Kim VN (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32(2):276–284

    Article  CAS  PubMed  Google Scholar 

  117. King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee J-S, Rustgi AK (2011) LIN28B promotes colon cancer progression and metastasis. Cancer Res 71(12):4260–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Miyazawa J, Mitoro A, Kawashiri S, Chada KK, Imai K (2004) Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res 64(6):2024–2029

    Article  CAS  PubMed  Google Scholar 

  119. Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M (2008) Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res 14(8):2334–2340

    Article  CAS  PubMed  Google Scholar 

  120. Di Cello F, Hillion J, Hristov A, Wood LJ, Mukherjee M, Schuldenfrei A, Kowalski J, Bhattacharya R, Ashfaq R, Resar LM (2008) HMGA2 participates in transformation in human lung cancer. Mol Cancer Res 6(5):743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang Y-C, Chen Y-L, Yuan R-H, Pan H-W, Yang W-C, Hsu H-C, Jeng Y-M (2010) Lin-28B expression promotes transformation and invasion in human hepatocellular carcinoma. Carcinogenesis 31(9):1516–1522

    Article  CAS  PubMed  Google Scholar 

  122. Helland Å, Anglesio MS, George J, Cowin PA, Johnstone CN, House CM, Sheppard KE, Etemadmoghadam D, Melnyk N, Rustgi AK (2011) Deregulation of MYCN, LIN28B and LET7 in a molecular subtype of aggressive high-grade serous ovarian cancers. PLoS One 6(4):e18064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fu Z, Kitagawa Y, Shen R, Shah R, Mehra R, Rhodes D, Keller PJ, Mizokami A, Dunn R, Chinnaiyan AM (2006) Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate 66(3):248–256

    Article  CAS  PubMed  Google Scholar 

  124. Schuierer MM, Bataille F, Hagan S, Kolch W, Bosserhoff A-K (2004) Reduction in Raf kinase inhibitor protein expression is associated with increased Ras-extracellular signal-regulated kinase signaling in melanoma cell lines. Cancer Res 64(15):5186–5192

    Article  CAS  PubMed  Google Scholar 

  125. Hagan S, Al-Mulla F, Mallon E, Oien K, Ferrier R, Gusterson B, García JJC, Kolch W (2005) Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res 11(20):7392–7397

    Article  CAS  PubMed  Google Scholar 

  126. Akaishi J, Onda M, Asaka S, Okamoto J, Miyamoto S, Nagahama M, Ito K, Kawanami O, Shimizu K (2006) Growth-suppressive function of phosphatidylethanolamine-binding protein in anaplastic thyroid cancer. Anticancer Res 26(6B):4437–4442

    CAS  PubMed  Google Scholar 

  127. Lu M-H, Huang C-C, Pan M-R, Chen H-H, Hung W-C (2012) Prospero homeobox 1 promotes epithelial–mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res 18(23):6416–6425

    Article  CAS  PubMed  Google Scholar 

  128. Hu M, Xia M, Chen X, Lin Z, Xu Y, Ma Y, Su L (2010) MicroRNA-141 regulates Smad interacting protein 1 (SIP1) and inhibits migration and invasion of colorectal cancer cells. Dig Dis Sci 55(8):2365–2372

    Article  CAS  PubMed  Google Scholar 

  129. Q-j L, Zhou L, Yang F, Wang G-x, Zheng H, Wang D-s, He Y, K-f D (2012) MicroRNA-10b promotes migration and invasion through CADM1 in human hepatocellular carcinoma cells. Tumor Biol 33(5):1455–1465

    Article  CAS  Google Scholar 

  130. Tian Y, Luo A, Cai Y, Su Q, Ding F, Chen H, Liu Z (2010) MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem 285(11):7986–7994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI, Heidecke CD, Lerch MM, Bagowski CP (2009) Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137(6):2136–2145. e2137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all authors responsible for the insights we attempted to summarize. Dr. Sadegh Babashah is funded by the Iranian Council for Stem Cell Research and Technology Development (11/76089) and the Tarbiat Modares University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Babashah.

Ethics declarations

Conflicts of Interests

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behbahani, G.D., Ghahhari, N.M., Javidi, M.A. et al. MicroRNA-Mediated Post-Transcriptional Regulation of Epithelial to Mesenchymal Transition in Cancer. Pathol. Oncol. Res. 23, 1–12 (2017). https://doi.org/10.1007/s12253-016-0101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-016-0101-6

Keywords

Navigation