Skip to main content

Advertisement

Log in

Strong Correlation Between mRNA Expression Levels of HIF-2α, VEGFR1, VEGFR2 and MMP2 in Laryngeal Carcinoma

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

The hypoxia that arises due to the rapid proliferation of tumor cells is a fundamental driving force for the canonical pathway of neovascularization. In the current study we report a very strong correlation between mRNA expression levels of HIF-2α (but not HIF-1α), VEGFR-1, VEGFR-2 and MMP2 in ex vivo samples from laryngeal carcinoma. Sixty-three samples from patients with histopathologically verified carcinoma of the larynx were examined in this study. Total RNA was isolated from both normal and tumor fresh frozen tissues of each patient and real-time quantitative PCR reactions were performed. The mRNA expression levels of HIF-1α, HIF-2α, VEGFR1, VEGFR2 and MMP2 were acquired. We found strong positive correlations between mRNA expression levels of HIF-2α and VEGFR-1, r s (98) = .671, p < .0005; HIF-2α and VEGFR-2, r s (98) = .742, p < .0005; HIF-2α and MMP2, r s (98) = .566, p < .0005; VEGFR-1 and VEGFR-2, r s (98) = .791, p < .0005; VEGFR-1 and MMP2, r s (98) = .709, p < .0005; VEGFR-2 and MMP2, r s (98) = .793, p < .0005. Our results provide evidence for the regulatory connection between HIF-2α and VEGFR-1, VEGFR-2 and MMP2 in the light of ETS1/ HIF-2α regulatory axis on a non-in-vitro level in carcinoma tissue, uncover some of the differences between the homologues HIF-1α and HIF-2α and round up and support the results from different experimental models in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  2. Fong GH (2008) Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11:121–140

    Article  PubMed  Google Scholar 

  3. Koh MY, Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37:364–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  CAS  PubMed  Google Scholar 

  5. Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M (1990) Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5:519–524

    CAS  PubMed  Google Scholar 

  6. Park JE, Chen HH, Winer J, Houck KA, Ferrara N (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269:25646–25654

    CAS  PubMed  Google Scholar 

  7. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    Article  CAS  PubMed  Google Scholar 

  8. Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114:853–865

    CAS  PubMed  Google Scholar 

  9. Quinn TP, Peters KG, de Vries C, Ferrara N, Williams LT (1993) Fetal liver kinase-1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci U S A 90:7533–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Popov TM, Goranova TE, Stancheva G et al (2015) Relative quantitative expression of HIF-1α, HIF-2α, HIF-3α and VEGF-A in laryngeal carcinoma. Oncol Lett 9:2879–2885

    PubMed  PubMed Central  Google Scholar 

  11. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  12. Scrideli CA, Carlotti CG Jr, Okamoto OK et al (2008) Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR. J Neurooncol 88:281–291

    Article  CAS  PubMed  Google Scholar 

  13. Borel F, Han R, Visser A et al (2012) Adenosine triphosphate-binding cassette transporter genes up-regulation in untreated hepatocellular carcinoma is mediated by cellular microRNAs. Hepatology 55:821–832

    Article  CAS  PubMed  Google Scholar 

  14. Dutta D, Ray S, Vivian JL, Paul S (2008) Activation of the VEGFR1 chromatin domain: an angiogenic signal-ETS1/HIF-2alpha regulatory axis. J Biol Chem 283:25404–25413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hahne JC, Kummer S, Heukamp LC et al (2009) Regulation of protein tyrosine kinases in tumour cells by the transcription factor Ets-1. Int J Oncol 35:989–996

    CAS  PubMed  Google Scholar 

  16. Elvert G, Kappel A, Heidenreich R et al (2013) Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha ) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 278:7520–7530

    Article  Google Scholar 

  17. Taki M, Verschueren K, Yokoyama K, Nagayama M, Kamata N (2006) Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Int J Oncol 28:487–496

    CAS  PubMed  Google Scholar 

  18. Liu DX, Liu XM, Su Y, Zhang XJ (2011) Renal expression of proto-oncogene Ets-1 on matrix remodeling in experimental diabetic nephropathy. Acta Histochem 113:527–533

    Article  CAS  PubMed  Google Scholar 

  19. Eubank TD, Roda JM, Liu H, O’Neil T, Marsh CB (2011) Opposing roles for HIF-1α and HIF-2α in the regulation of angiogenesis by mononuclear phagocytes. Blood 117:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

All authors provided substantial input into the conceptualization, drafting and editing of this report. Each has given approval for the publication of the article. Study was funded by a grant from the Medical University of Sofia - N:13-D/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todor M. Popov.

Ethics declarations

Conflict of Interest

Authors report no conflict of interest in the publication of the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, T.M., Stancheva, G., Goranova, T.E. et al. Strong Correlation Between mRNA Expression Levels of HIF-2α, VEGFR1, VEGFR2 and MMP2 in Laryngeal Carcinoma. Pathol. Oncol. Res. 22, 741–746 (2016). https://doi.org/10.1007/s12253-016-0059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-016-0059-4

Keywords

Navigation