Skip to main content

Advertisement

Log in

Up-Regulation of miR-21 Expression Predicate Advanced Clinicopathological Features and Poor Prognosis in Patients with Non-Small Cell Lung Cancer

  • Original Article
  • Published:
Pathology & Oncology Research

An Erratum to this article was published on 27 November 2015

Abstract

MicroRNAs (miRNAs) are endogenous small (19–24 nt long) noncoding RNAs that regulate gene expression in a sequence specific manner. An increasing association between miRNA and cancer has been recently reported. Lung cancer is globally responsible for 1.4 million deaths annually and is the leading cause of cancer-related deaths in both women and men. In this study, we investigated the miR-21 expression in non-small cell lung cancer (NSCLC) to evaluate their value in prognosis of this tumor. Here, we assess miR-21 expression in NSCLC and its clinical significance including survival analysis. The expression of miR-21 in matched normal and tumor tissues of NSCLC was evaluated using a quantitative real-time RT-PCR. A Kaplan–Meier survival curve was generated following a logrank test. It was observed that miR-21 expression was up-regulated in NSCLC tissues compared with noncancerous lung tissues (mean ± SD: 6.7 ± 2.3 vs. 3.7 ± 1.5, P < 0.001). The up-regulation of miR-21 in NSCLC cancer tissues was also significantly correlated with aggressive clinicopathological features. We found that the patients with high miR-21 expression have a higher tumor grade (P = 0.027) and are in higher risk of lymph node metastasis (P = 0.021). Moreover, the results of Kaplan–Meier analyses showed that NSCLC patients with the high miR-21 expression tend to have shorter overall survival and progression free survival (P < 0.001). The multivariate analysis clearly indicated that the high miR-21 expression in biopsy samples may be considered as an independent prognostic factor in NSCLC for decreased survival (RR 3.88; 95%CI, 2.47–6.11). Our data indicate the potential of miR-21 as a novel prognostic biomarker for NSCLC. Large well-designed studies with diverse populations and functional evaluations are warranted to confirm and extend our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zycinska K, Kostrzewa-Janicka J, Nitsch-Osuch A, Wardyn K (2013) Cancer incidence in pulmonary vasculitis. Adv Exp Med Biol 788:349–353

    Article  CAS  PubMed  Google Scholar 

  2. Hata A, Katakami N, Yoshioka H, Takeshita J, Tanaka K, Nanjo S, Fujita S, et al. (2013) Rebiopsy of non-small cell lung cancer patients with acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitor: comparison between T790M mutation-positive and mutation-negative populations. Cancer 119:4325–4323

    Article  CAS  PubMed  Google Scholar 

  3. Spigel DR, Ervin TJ, Ramlau RA, Daniel DB, Goldschmidt Jr JH, Blumenschein Jr GR, Krzakowski MJ, et al. (2013) Randomized phase II trial of onartuzumab in combination with erlotinib in patients with advanced Non-small-cell lung cancer. J Clin Oncol 31:4105–4114

  4. Shapiro M, Kadakia S, Lim J, Breglio A, Wisnivesky JP, Kaufman A, Lee DS, et al. (2013) Lobe-specific mediastinal nodal dissection is sufficient during lobectomy by video-assisted thoracic surgery or thoracotomy for early-stage lung cancer. Chest 144:1615–1621

    Article  PubMed  Google Scholar 

  5. Dhawan P, Singh AB, Ellis DL, Richmond A (2002) Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res 62:7335–7342

    CAS  PubMed  Google Scholar 

  6. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  8. de Yebenes VG, Ramiro AR (2010) MicroRNA activity in B lymphocytes. Methods Mol Biol 667:177–192

    Article  PubMed Central  PubMed  Google Scholar 

  9. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, et al. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  10. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  11. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  CAS  PubMed  Google Scholar 

  13. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

    Article  CAS  PubMed  Google Scholar 

  14. Gao W, Yu Y, Cao H, Shen H, Li X, Pan S, Shu Y (2010) Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 64:399–408

    Article  CAS  PubMed  Google Scholar 

  15. Lo TF, Tsai WC, Chen ST (2013) MicroRNA-21-3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS One 8:e75628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang Y, Gao X, Wei F, Zhang X, Yu J, Zhao H, Sun Q, et al. (2013) Diagnostic and prognostic value of circulating miR-21 for cancer: a systematic review and meta-analysis. Gene 533(1):389–397

  17. Ferraro A, Kontos C, Boni T, Bantounas I, Siakouli D, Kosmidou V, Vlassi M, et al. (2013) Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGBeta4-PCDC4) as predictor of metastatic tumor potential. Epigenetics 9:129–141

  18. Brito JA, Gomes CC, Guimaraes AL, Campos K, Gomez RS (2014) Relationship between microRNA expression levels and histopathological features of dysplasia in oral leukoplakia. J Oral Pathol Med 43:211–216

  19. Chen TH, Chang SW, Huang CC, Wang KL, Yeh KT, Liu CN, Lee H, et al. (2013) The prognostic significance of APC gene mutation and miR-21 expression in advanced stage colorectal cancer. Color Dis 15:1367–1374

    Article  Google Scholar 

  20. Li Z, Li N, Wu M, Li X, Luo Z, Wang X (2013) Expression of miR-126 suppresses migration and invasion of colon cancer cells by targeting CXCR4. Mol Cell Biochem 381:233–242

    Article  CAS  PubMed  Google Scholar 

  21. Jia LF, Wei SB, Gong K, Gan YH, Yu GY. Prognostic implications of micoRNA miR-195 expression in human tongue squamous cell carcinoma. PLoS One 2013;8:e56634.

  22. Pelosi A, Careccia S, Lulli V, Romania P, Marziali G, Testa U, Lavorgna S, et al. (2013) MiRNA let-7c promotes granulocytic differentiation in acute myeloid leukemia. Oncogene 32:3648–3654

    Article  CAS  PubMed  Google Scholar 

  23. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359

    Article  CAS  PubMed  Google Scholar 

  24. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, et al. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Selcuklu SD, Donoghue MT, Spillane C (2009) miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37:918–925

    Article  CAS  PubMed  Google Scholar 

  26. Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK, Burger R, et al. (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110:1330–1333

    Article  PubMed  Google Scholar 

  27. Saito M, Schetter AJ, Mollerup S, Kohno T, Skaug V, Bowman ED, Mathe EA, et al. (2011) The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin Cancer Res 17:1875–1882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Schmittgen TD, Jiang J, Liu Q, Yang L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 2004;32:e43.

  29. Ozgun A, Karagoz B, Bilgi O, Tuncel T, Baloglu H, Kandemir EG (2013) MicroRNA-21 as an indicator of aggressive phenotype in breast cancer. Onkologie 36:115–118

    Article  PubMed  Google Scholar 

  30. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373–4379

    Article  CAS  PubMed  Google Scholar 

  31. Komatsu S, Ichikawa D, Tsujiura M, Konishi H, Takeshita H, Nagata H, Kawaguchi T, et al. (2013) Prognostic impact of circulating miR-21 in the plasma of patients with gastric carcinoma. Anticancer Res 33:271–276

    PubMed  Google Scholar 

  32. Hermansen SK, Dahlrot RH, Nielsen BS, Hansen S, Kristensen BW (2013) MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas. J Neuro-Oncol 111:71–81

    Article  CAS  Google Scholar 

Download references

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contribution

LT, XJL, XHL and CYW provided the conduction of the whole project, LT, WYS, YFZ, XJL, XHL and CYW performed the research, LT, WYS, YFZ, XJL, XHL and CYW drafted the manuscript; LT and CYW contributed to revise the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Shan, W., Zhang, Y. et al. Up-Regulation of miR-21 Expression Predicate Advanced Clinicopathological Features and Poor Prognosis in Patients with Non-Small Cell Lung Cancer. Pathol. Oncol. Res. 22, 161–167 (2016). https://doi.org/10.1007/s12253-015-9979-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-9979-7

Keywords

Navigation