Skip to main content

Advertisement

Log in

Nuclear Protein Phosphatase 1 α (PP1A) Expression is Associated with Poor Prognosis in p53 Expressing Glioblastomas

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Background

Protein phosphatase 1 α (PP1A) is an enzyme intimately associated with cell cycle, the over expression of which has been demonstrated in glioblastoma (GBM). Further, the nuclear expression of PP1A has been shown to be highly specific to GBM. In addition, PP1A has been shown to be a connecting molecule in the p53 containing GBM sub network. In view of these, we evaluated the prognostic relevance of PP1A.

Methods

GBM tissues were examined for protein expression of PP1A by immunohistochemistry (IHC). Nuclear expression of PP1A was scored in all tumor tissue samples. Survival analyses were performed by Cox-Regression and Kaplan-Meier survival analysis with Log Rank tests. IDH1, ATRX and p53 IHC and stratification of all GBM cases were performed and subgroup specific evaluation of nuclear PP1A correlation with overall and progression free survival was performed.

Results

PP1A protein expression showed no correlation with prognosis in all cases of GBM or on stratification based on IDH1 or ATRX expression. However on p53 stratification nuclear PP1A expression emerged as strong independent predictor of poor overall survival only in p53 positive GBMs both in univariate and multivariate analysis.

Conclusions

While PP1A expression uniquely associates with poor prognosis only in p53 expressing GBMs, there is a notable absence of such correlation in p53 negative GBMs; thus skewing the overall relation of this molecule with prognosis in GBM. PP1A emerging as a strong prognostic marker in p53 expressing GBMs, enables us to foresee this molecule as a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310:1842–50. doi:10.1001/jama.2013.280319

    Article  CAS  PubMed  Google Scholar 

  2. Ladha J, Donakonda S, Agrawal S et al (2010) Glioblastoma-specific protein interaction network identifies PP1A and CSK21 as connecting molecules between cell cycle-associated genes. Cancer Res 70:6437–47. doi:10.1158/0008-5472.CAN-10-0819

    Article  CAS  PubMed  Google Scholar 

  3. Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39. doi:10.1152/physrev.00013.2003

    Article  CAS  PubMed  Google Scholar 

  4. Wu JQ, Guo JY, Tang W et al (2009) PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nat Cell Biol 11:644–51. doi:10.1038/ncb1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang RH, Liu CW, Avramis VI, Berndt N (2001) Protein phosphatase 1alpha-mediated stimulation of apoptosis is associated with dephosphorylation of the retinoblastoma protein. Oncogene 20:6111–22. doi:10.1038/sj.onc.1204829

    Article  CAS  PubMed  Google Scholar 

  6. Castro ME, Ferrer I, Cascón A et al (2008) PPP1CA contributes to the senescence program induced by oncogenic Ras. Carcinogenesis 29:491–9. doi:10.1093/carcin/bgm246

    Article  CAS  PubMed  Google Scholar 

  7. Lu Z, Wan G, Guo H et al (2013) Protein phosphatase 1 inhibits p53 signaling by dephosphorylating and stabilizing Mdmx. Cell Signal 25:796–804. doi:10.1016/j.cellsig.2012.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruiz L, Traskine M, Ferrer I et al (2008) Characterization of the p53 response to oncogene-induced senescence. PLoS One 3:e3230. doi:10.1371/journal.pone.0003230

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thota B, Shukla SK, Srividya MR et al (2012) IDH1 mutations in diffusely infiltrating astrocytomas: grade specificity, association with protein expression, and clinical relevance. Am J Clin Pathol 138:177–84. doi:10.1309/AJCPZOIY3WY4KIKE

    Article  CAS  PubMed  Google Scholar 

  10. Haberler C, Wöhrer A (2014) Clinical Neuropathology practice news 2–2014: ATRX, a new candidate biomarker in gliomas. Clin Neuropathol 33:108–111. doi:10.5414/NP300758

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hou LC, Veeravagu A, Hsu AR, Tse VCK (2006) Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurg Focus 20:E5

    Article  PubMed  Google Scholar 

  12. Lamborn KR, Yung WKA, Chang SM et al (2008) Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro Oncol 10:162–70. doi:10.1215/15228517-2007-062

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weller M, Felsberg J, Hartmann C et al (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27:5743–50. doi:10.1200/JCO.2009.23.0805

    Article  CAS  PubMed  Google Scholar 

  14. Srividya MR, Thota B, Arivazhagan v et al (2010) Age-dependent prognostic effects of EGFR/p53 alterations in glioblastoma: study on a prospective cohort of 140 uniformly treated adult patients. J Clin Pathol 63:687–91. doi:10.1136/jcp.2009.074898

    Article  CAS  PubMed  Google Scholar 

  15. Hofstetter CP, Burkhardt J-K, Shin BJ et al (2012) Protein phosphatase 2A mediates dormancy of glioblastoma multiforme-derived tumor stem-like cells during hypoxia. PLoS One 7:e30059. doi:10.1371/journal.pone.0030059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu J, Kovach JS, Johnson F et al (2009) Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms. Proc Natl Acad Sci U S A 106:11697–702. doi:10.1073/pnas.0905930106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li J, Huang J, Li M et al (2012) Anisomycin induces glioma cell death via down-regulation of PP2A catalytic subunit in vitro. Acta Pharmacol Sin 33:935–40. doi:10.1038/aps.2012.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsaytler P, Bertolotti A (2013) Exploiting the selectivity of protein phosphatase 1 for pharmacological intervention. FEBS J 280:766–70. doi:10.1111/j.1742-4658.2012.08535.x

    Article  CAS  PubMed  Google Scholar 

  19. Cohen PTW (2002) Protein phosphatase 1–targeted in many directions. J Cell Sci 115:241–56

    CAS  PubMed  Google Scholar 

  20. Chatterjee J, Köhn M (2013) Targeting the untargetable: recent advances in the selective chemical modulation of protein phosphatase-1 activity. Curr Opin Chem Biol 17:361–8. doi:10.1016/j.cbpa.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  21. Reddy SP, Britto R, Vinnakota K et al (2008) Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 14:2978–87. doi:10.1158/1078-0432.CCR-07-4821

    Article  CAS  PubMed  Google Scholar 

  22. Pich A, Margaria E, Chiusa L (2000) Oncogenes and male breast carcinoma: c-erbB-2 and p53 coexpression predicts a poor survival. J Clin Oncol 18:2948–56

    CAS  PubMed  Google Scholar 

  23. Nakopoulou LL, Alexiadou A, Theodoropoulos GE et al (1996) Prognostic significance of the co-expression of p53 and c-erbB-2 proteins in breast cancer. J Pathol 179:31–8. doi:10.1002/(SICI)1096-9896(199605)179:1<31::AID-PATH523>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  24. Park YB, Kim HS, Oh JH, Lee SH (2001) The co-expression of p53 protein and P-glycoprotein is correlated to a poor prognosis in osteosarcoma. Int Orthop 24:307–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie Y, Bulbul MA, Ji L et al (2014) p53 expression is a strong marker of inferior survival in de novo diffuse large B-cell lymphoma and may have enhanced negative effect with MYC coexpression: a single institutional clinicopathologic study. Am J Clin Pathol 141:593–604. doi:10.1309/AJCPPHMZ6VHF0WQV

    Article  CAS  PubMed  Google Scholar 

  26. Takami H, Yoshida A, Fukushima S et al (2014) Revisiting TP53 mutations and immunohistochemistry—a comparative study in 157 diffuse gliomas. Brain Pathol. doi:10.1111/bpa.12173

    PubMed  Google Scholar 

  27. Liu CWY, Wang R-H, Berndt N (2006) Protein phosphatase 1alpha activity prevents oncogenic transformation. Mol Carcinog 45:648–56. doi:10.1002/mc.20191

    Article  CAS  PubMed  Google Scholar 

  28. Hsu L-C, Huang X, Seasholtz S et al (2006) Gene amplification and overexpression of protein phosphatase 1alpha in oral squamous cell carcinoma cell lines. Oncogene 25:5517–26. doi:10.1038/sj.onc.1209563

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Prof. M.R.S Rao, Jawaharlal Nehru Centre for Advanced Scientific Research for his support and guidance. Project investigators and project assistants, involved NIMITLI-CSIR (Neuro-Oncology) project are acknowledged. Arun H Shastry is supported by Indian Council of Medical Research, Government of India, under the MD-PhD/TSS-2, medical scientist training program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vani Santosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shastry, A.H., Thota, B., Srividya, M.R. et al. Nuclear Protein Phosphatase 1 α (PP1A) Expression is Associated with Poor Prognosis in p53 Expressing Glioblastomas. Pathol. Oncol. Res. 22, 287–292 (2016). https://doi.org/10.1007/s12253-015-9928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-9928-5

Keywords

Navigation