Skip to main content

Advertisement

Log in

Identification of Target Genes Regulated by KSHV miRNAs in KSHV-Infected Lymphoma Cells

  • Research
  • Published:
Pathology & Oncology Research

Abstract

This study aimed to identify target genes regulated by KSHV miRNAs in KSHV-infected lymphoma cells. Original Ago HITS-CLIP data of BC-3 and BCBL-1 cell lines were downloaded from SRA database in NCBI, including mRNA and miRNA samples. The raw mRNA reads were mapped into human reference genome hg19 via TopHat for read alignment. PCR duplicates were removed via the SAM tool and the peaks of reads were analyzed via Cufflinks. For miRNA data, the raw data were mapped to the mature miRNA sequences based on miRBase via Bowtie. Peak intersection was computed by using intersectBed in BEDtools. Then, the mature miRNA seeds were identified and then were aligned with 3’ UTR merged peaks. The regulationships of miRNAs and their corresponding genes were analyzed based on the signal of RNA-induced silencing complex. Totally, 7 KSHV-related genes regulated by KSHV miRNAs were identified, including IPO5, EDA, NT5C3, WSB1, KCNS1, PRAM1 and MTRNR2L6. Among them, EDA, MTRNR2L6 and IPO5 were regulated by multiple KSHV miRNAs, such as kshv-miR-K12-1-5p, kshv-miR-K12-4-3p and kshv-miR-K12-3-5p, respectively. Furthermore, expression of kshv-miR-K12-1-5p and kshv-miR-K12-3-5p in BCBL-1 cell line were lower than that in BC-3 cell line, conversely, expression of kshv-miR-K12-4-3p in BCBL-1 cell line were higher than that in BC-3 cell line. In conclusion, potential target genes regulated by KSHV miRNAs in KSHV-infected lymphoma cells might play key roles in the nosogenesis of this disease. These findings might provide the basis for deep understanding of KSHV-infected tumors and further molecular experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma–associated herpesvirus-like DNA sequences in AIDS-related body-cavity–based lymphomas. N Engl J Med 332:1186–1191

    Article  CAS  PubMed  Google Scholar 

  2. Lin X, Li X, Liang D, Lan K (2012) MicroRNAs and unusual small RNAs discovered in Kaposi’s sarcoma-associated herpesvirus virions. J Virol 86:12717–12730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Gottwein E, Mukherjee N, Sachse C et al (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450:1096–1099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hansen A, Henderson S, Lagos D et al (2010) KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev 24:195–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gottwein E, Cullen BR (2010) A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J Virol 84:5229–5237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Haecker I, Gay LA, Yang Y et al (2012) Ago HITS-CLIP expands understanding of Kaposi’s sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog 8:23

    Article  Google Scholar 

  7. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  9. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  11. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Da Wei Huang BTS, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  Google Scholar 

  13. Ashburner M, Ball CA, Blake JA et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Punj V, Matta H, Chaudhary PM (2010) X-linked ectodermal dysplasia receptor is downregulated in breast cancer via promoter methylation. Clin Cancer Res 16:1140–1148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Keller SA, Schattner EJ, Cesarman E (2000) Inhibition of NF-κB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 96:2537–2542

    CAS  PubMed  Google Scholar 

  16. De Oliveira DE, Ballon G, Cesarman E (2010) NF-κB signaling modulation by EBV and KSHV. Trends Microbiol 18:248–257

    Article  PubMed  Google Scholar 

  17. Aggarwal BB (2000) Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-κB. Ann Rheum Dis 59:i6–i16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lei X, Bai Z, Ye F et al (2010) Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA. Nat Cell Biol 12:193–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bodzioch M, Lapicka-Bodzioch K, Zapala B, Kamysz W, Kiec-Wilk B, Dembinska-Kiec A (2009) Evidence for potential functionality of nuclearly-encoded humanin isoforms. Genomics 94:247–256

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto Y, Niikura T, Tajima H et al (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Aβ. Proc Natl Acad Sci U S A 98:6336–6341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Guo B, Zhai D, Cabezas E et al (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456–461

    Article  CAS  PubMed  Google Scholar 

  22. Luciano F, Zhai D, Zhu X et al (2005) Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2/Bax family protein BimEL. J Biol Chem 280:15825–15835

    Article  CAS  PubMed  Google Scholar 

  23. Skalsky RL, Samols MA, Plaisance KB et al (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81:12836–12845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gorlich D, Mattaj IW (1996) Nucleocytoplasmic transport. Science 271:1513–1519

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, L., Qiu, T., Liang, J. et al. Identification of Target Genes Regulated by KSHV miRNAs in KSHV-Infected Lymphoma Cells. Pathol. Oncol. Res. 21, 875–880 (2015). https://doi.org/10.1007/s12253-015-9902-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-9902-2

Keywords

Navigation