Skip to main content

Advertisement

Log in

ATG16L1 T300A Polymorphism is Correlated with Gastric Cancer Susceptibility

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Gastric cancer is a major leading cause of cancer-related death in both sexes in Europe. The role of autophagy process in carcinogenesis remains unclear and there is increasing evidence that Helicobacter pylori is a key player in modulating autophagy in gastric carcinogenesis. The aim of this study was to assess the potential association of ATG16L1 T300A polymorphism with susceptibility of gastric cancer, and further to analyze the expression profile of ATG16L1 gene in paired tumoral and peritumoral gastric tissue. A total of 108 patients diagnosed with gastric cancer and 242 healthy controls were enrolled. ATG16L1 T300A polymorphism was detected using TaqMan genotyping assay containing primers and specific probes for A and G allele, respectively. ATG16L1 mRNA level was evaluated in 34 paired tumoral and peritumoral tissues using qRT-PCR. We found a significant association for both carriers of AG (OR 0.52, 95 % CI: 0.30–0.91, p = 0.02) and GG genotype (OR 0.53, 95 % CI: 0.28–0.98, p = 0.043), these were at a lower risk for gastric cancer when compared with the wild-type AA genotype. The strongest association was observed in a dominant model, the carriers of G allele were protected against gastric cancer (OR 0.52, 95 % CI: 0.13–0.88, p = 0.013). In a stratified analyse, the association was limited to non-cardia type and intestinal type. ATG16L1 gene expression was detected in both tumor and peritumoral tissues, with the mRNA-ATG16L1 levels significantly higher in tumor sample. Our results suggest that ATG16L1 T300A polymorphism may be associated with gastric carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Arnold M, Karim-Kos HE, Coebergh JW, Byrnes G, Antilla A, Ferlay J, Renehan AG, Forman D, Soerjomataram I (2015) Recent trends in incidence of five common cancers in 26 European countries since 1988: analysis of the European cancer observatory. Eur J Cancer 51(9):1164–1187. doi:10.1016/j.ejca.2013.09.002

    Article  PubMed  Google Scholar 

  2. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F (2013) Cancer incidence and mortality patterns in europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403. doi:10.1016/j.ejca.2012.12.027

    Article  CAS  PubMed  Google Scholar 

  3. Polk DB, Peek Jr RM (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10(6):403–414. doi:10.1038/nrc2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biological agents. Volume 100 B. A review of human carcinogens (2012). IARC Monogr Eval Carcinog Risks Hum 100 (Pt B):1–441

  5. Sepulveda AR (2013) Helicobacter, inflammation, and gastric cancer. Curr Pathobiol Rep 1(1):9–18. doi:10.1007/s40139-013-0009-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cid TP, Fernandez MC, Benito Martinez S, Jones NL (2013) Pathogenesis of Helicobacter pylori infection. Helicobacter 18(Suppl 1):12–17. doi:10.1111/hel.12076

    Article  PubMed  Google Scholar 

  7. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42. doi:10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80:125–156. doi:10.1146/annurev-biochem-052709-094552

    Article  CAS  PubMed  Google Scholar 

  9. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323–335. doi:10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19(5):2092–2100. doi:10.1091/mbc.E07-12-1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brest P, Corcelle EA, Cesaro A, Chargui A, Belaid A, Klionsky DJ, Vouret-Craviari V, Hebuterne X, Hofman P, Mograbi B (2010) Autophagy and crohn’s disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr Mol Med 10(5):486–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng H, Ji C, Li J, Jiang H, Ren M, Lu Q, Gu S, Mao Y, Xie Y (2004) Cloning and analysis of human Apg16L. DNA Seq 15(4):303–305

    Article  CAS  PubMed  Google Scholar 

  13. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, Ferguson DJ, Campbell BJ, Jewell D, Simmons A (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16(1):90–97. doi:10.1038/nm.2069

    Article  CAS  PubMed  Google Scholar 

  14. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Gunther S, Prescott NJ, Onnie CM, Hasler R, Sipos B, Folsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for crohn disease in ATG16L1. Nat Genet 39(2):207–211. doi:10.1038/ng1954

    Article  CAS  PubMed  Google Scholar 

  15. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhart AH, Rotter JI, Duerr RH, Cho JH, Daly MJ, Brant SR (2007) Genome-wide association study identifies new susceptibility loci for crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39(5):596–604. doi:10.1038/ng2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls (2007). Nature 447 (7145):661–678. doi:10.1038/nature05911

  17. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10(1):51–64. doi:10.1016/j.ccr.2006.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Greenfield LK, Jones NL (2013) Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol 21(11):602–612. doi:10.1016/j.tim.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  19. Terebiznik MR, Raju D, Vazquez CL, Torbricki K, Kulkarni R, Blanke SR, Yoshimori T, Colombo MI, Jones NL (2009) Effect of Helicobacter pylori’s vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy 5(3):370–379

    Article  CAS  PubMed  Google Scholar 

  20. Raju D, Hussey S, Ang M, Terebiznik MR, Sibony M, Galindo-Mata E, Gupta V, Blanke SR, Delgado A, Romero-Gallo J, Ramjeet MS, Mascarenhas H, Peek RM, Correa P, Streutker C, Hold G, Kunstmann E, Yoshimori T, Silverberg MS, Girardin SE, Philpott DJ, El Omar E, Jones NL (2012) Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology 142(5):1160–1171. doi:10.1053/j.gastro.2012.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268. doi:10.1038/nature07383

    Article  CAS  PubMed  Google Scholar 

  22. Huijbers A, Plantinga TS, Joosten LA, Aben KK, Gudmundsson J, den Heijer M, Kiemeney LA, Netea MG, Hermus AR, Netea-Maier RT (2012) The effect of the ATG16L1 Thr300Ala polymorphism on susceptibility and outcome of patients with epithelial cell-derived thyroid carcinoma. Endocr Relat Cancer 19(3):L15–L18. doi:10.1530/erc-11-0302

    Article  PubMed  Google Scholar 

  23. Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE, Peloquin JM, Villablanca EJ, Norman JM, Liu TC, Heath RJ, Becker ML, Fagbami L, Horn H, Mercer J, Yilmaz OH, Jaffe JD, Shamji AF, Bhan AK, Carr SA, Daly MJ, Virgin HW, Schreiber SL, Stappenbeck TS, Xavier RJ (2014) Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc Natl Acad Sci U S A 111(21):7741–7746. doi:10.1073/pnas.1407001111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuballa P, Huett A, Rioux JD, Daly MJ, Xavier RJ (2008) Impaired autophagy of an intracellular pathogen induced by a crohn’s disease associated ATG16L1 variant. PLoS One 3(10):e3391. doi:10.1371/journal.pone.0003391

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grimm WA, Messer JS, Murphy SF, Nero T, Lodolce JP, Weber CR, Logsdon MF, Bartulis S, Sylvester BE, Springer A, Dougherty U, Niewold TB, Kupfer SS, Ellis N, Huo D, Bissonnette M, Boone DL (2015) The Thr300Ala variant in ATG16L1 is associated with improved survival in human colorectal cancer and enhanced production of type I interferon. Gut. doi:10.1136/gutjnl-2014-308735

    Google Scholar 

Download references

Acknowledgments

F.B. was supported by Grant POSDRU/159/1.5/S/133377, from European Social Found, Human Resources Development Operational Programme 2007-2013.

Author Contributions

F.B., I.R. and M.I. conceived the study; F.B, R.N. and I.S. performed the experiments; E.M.C., I.D.V., I.R. and I.M. provided resource and materials; F.B, E.M.C., I.S., R.N., and I.D.V analyzed the data; F.B., E.M.C. and I.M. wrote the manuscript; I.R. and I.M. supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Burada.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Florin Burada and Marius Eugen Ciurea contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burada, F., Ciurea, M.E., Nicoli, R. et al. ATG16L1 T300A Polymorphism is Correlated with Gastric Cancer Susceptibility. Pathol. Oncol. Res. 22, 317–322 (2016). https://doi.org/10.1007/s12253-015-0006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-0006-9

Keywords

Navigation